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FOREWORD 

The eighth 'Aha Huliko'at Hawaiian Winter Workshop was held January 17-20, 
1995, at the East-West Center in Honolulu, Hawaii. The topic was Flow-Topography 
Interactions. 

Topography affects ocean circulation in many ways. Topography guides and blocks 
ocean currents; it supports special wave modes and traps others; it rectifies time- 
dependent flows and breaks up depth-independent flows; it exerts a stress on mean 
flows and causes mixing. Many of these topographic effects have recently been 
studied by intense observational programs and by high resolution numerical 
simulations. These studies were the object of the workshop's lecture and discussions. 
Overall, they showed that the influence of seafloor topography on ocean circulation is 
greater than previously assumed. 

The lectures of the workshop are published in these proceedings. The order of the 
papers follows loosely the agenda of the workshop and covers seamounts, abyssal 
circulations, ocean-shelf exchanges, and the rectification process. Also included is a 
summary of the meeting. 

The workshop, made possible by a grant from the U.S. Office of Naval Research, 
was hosted by the Department of Oceanography of the School of Ocean and Earth 
Science and Technology, University of Hawaii. Support by the SOEST Enrichment 
Fund and the Joint Institute for Marine and Atmospheric Research is gratefully 
acknowledged. The excellent facilities and capable staff of the East-West Center 
contributed greatly to the success of the meeting. This proceedings volume came into 
existence through the creative and dedicated research of the scientists who gathered 
and Hawaii and provided the articles that follow. 

Peter Müller Department of Oceanography 
Diane Henderson School of Ocean and Earth Science and Technology 

1000 Pope Road 
University of Hawaii 
Honolulu, HI 96822 

t- Aha Huliko'a is a Hawaiian phrase meaning an assembly that seeks into the depth of a matter. 
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Waves, Mean Flows, and Mixing at a Seamount 

Charles C. Briksen 

School of Oceanography, University of Washington, Box 357940, Seattle WA 98195-7940 

Abstract. Moored array measurements of current and temperature at Fieberling Guyot (32° 25 'N, 127° 47' W) 
are dominated by internal wave and tidal band fluctuations. Internal wave band variance on the flanks of the 
seamount is dominated by amplification of waves by reflection at and near the local critical frequency of the 
sloping bottom. Diurnal, slightly superinertial, and semidiurnal band fluctuations exhibit coherent downward 
phase propagation. These have the character of a forced evanescent response as opposed to free vertically- 
radially standing seamount trapped wave modes. At depths near the summit rim, mean horizontal flows have 
a component toward deeper water, while on the flanks mean flows are much weaker but have a component 
toward shallower water. In both cases, the mean Eulerian flows appear driven by fluctuations. 

Introduction 

Until recently, very little was known about the 
character of oceanic flow near seamounts, particularly 
seamounts that occupy a substantial fraction of the water 
column. Most observations and theories were concerned 
with distortions of mean flows by isolated topographic 
features rather than with wavelike fluctuations found near 
them. Theories have addressed the possibility that Taylor 
caps may isolate water above a seamount from 
surrounding water masses. Chapman and Haidvogel, 
1992, considered formation of Taylor caps over large 
seamounts, in contrast to much previous work restricted 
to considering topography that occupied only a small 
fraction of the total depth. By contrast, observations at 
Fieberling Guyot, a large seamount in the eastern North 
Pacific (32° 25'N, 127° 47'W) show that flows are 
dominated by fluctuations rather than the mean. These 
fluctuations are predominately tidal (Eriksen, 1991, 
Brink, 1995) in the depth range bracketing the summit 
and centered at the critical frequency for internal wave 
reflection off a slope deep on the seamount flanks 
(Eriksen, 1995). Mean flows are generally parallel to 
depth contours near the bottom in an anticyclonic sense 
but do have slight cross-isobath components. Near the 
summit, horizontal flows are in the off-slope sense, 
consistent with local downwelling (Eriksen, 1991, Brink, 
1995), yet on the steep flanks of the seamount, flows near 
the bottom have an onslope (radially inward) sense. This 
paper discusses the possibility that these radial mean 
flows are associated with the fluctuating flows in tidal 
and internal wave bands. 

The paper begins with a brief summary of the structure 
of internal wave band motions on the steep flank of 
Fieberling Guyot and their connection to mixing events. 
The description and analysis of Eriksen, 1995, is 
extended to include buoyancy and momentum flux 

estimates and their spatial structures. The following 
section presents a description of motions in diurnal and 
semidiurnal frequencies and the band between them, 
which includes the inertial frequency. Brink, 1995, 
confined his description to motions in tidal bands near the 
seamount summit, while motions over a continuum 
across the inertial frequency all exhibit a similar 
structure, including continuous downward phase 
propagation to the bottom on the sloping flanks. As with 
internal waves, these motions generate eddy fluxes of 
buoyancy and momentum. Kunze, 1995, recognized the 
phase structure of flow atop Fieberling in velocity profile 
surveys and showed the consistency in several respects of 
a vortex trapped internal wave model with these 
observations, in contrast to Brink's seamount trapped 
wave model. Here, we offer another possible 
explanation: that the motions observed are an evanescent 
wave response to forcing across a wide range of 
frequencies, both subinertial and superinertial. Finally, 
the paper examines the mean flows observed both near 
the summit and on the flank of the seamount, 
emphasizing the radial component of flow near the 
bottom from which vertical motion is inferred. In the last 
section, the possibility that internal wave breaking and 
evanescent wave rectification generates mean flows is 
discussed. 

The Field Study 

The observations used here were collected as part of a 
multi-disciplinary project called TOPO, sponsored by the 
U.S. Office of Naval Research. The field program at 
Fieberling Guyot included a thirteen-month moored array 
of current and temperature sensors at various locations on 
and near the seamount. Details of the records are 
presented in Wichman et al, 1993. Records considered 
here are from moorings were set near the summit (C), at 
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the rim of the summit plain (R2 and R3), and on the 
seamount flanks (F2, F3, F4, and F5) (Figure 1). These 
moorings were located over one quadrant rather than on 
all sides of the guyot for reasons of economy. 
Seamount bathymetry was surveyed with a multi-beam 
depth sounder prior to the deployment cruise and again, 
in more detail near the mooring sites, on the recovery 
cruise. The cluster consisting of three moorings F3, F4, 
and F5, each separated by roughly 300 m on the 
southwest flank of the seamount, formed an internal wave 
array while the summit, rim, and flank moorings together 
formed an array to detect bottom-trapped motions that 
propagate azimuthally around the seamount. 

Fieberling Guyot 

127°55'W 127°50'W 127Ö45'W 

32' 30'N 

32' 25'N 

32" 20'N 
127'55'W 

32" 30'N 

32" 25'N 

32= 20'N 
127'50'W 127'45'W 

Figure 1. Bathymetry and locations of moorings on the 
western summit region of Fieberling Guyot. The moorings 
designated C, R, and F were placed near the center, on the rim 
of the summit plain, and on the flanks of the seamount. The 
triangle of moorings F3, F4, and F5 formed an internal wave 
array. The mooring P was from a pilot study one year before 
the rest of the array was set (see Eriksen, 1991). Depth 
contours are from a partial Hydrosweep survey of the seamount 
on the mooring recovery cruise on R/V Thompson. Depth 
contours are drawn every 50 m with every tenth contour drawn 
with heavy curve. The summit, a rocky spur is at 444 m depth. 
The seamount rises from a surrounding region of 4500 m depth. 

Roden, 1991, 1994, allowed use of his conductivity- 
temperature-depth (CTD) surveys near Fieberling Guyot 
in August, 1989 and May, 1991 to calculate average 
temperature and salinity profiles, temperature-salinity 
relationships, and buoyancy frequency profiles. These 
are used to interpret temperature fluctuations variously as 
buoyancy or vertical velocity fluctuations through 
assuming that temperature fluctuations are reflect vertical 
advection of the mean gradient field. 

Standard techniques of spectral analysis were applied 
to a common 364-day period subset of the records 
starting October 1,1990. Independent spectral estimates 
were formed by averaging over 13 adjacent frequency 
bands for periods 12 h and longer and doubling the 
amount of averaging for each successive octave above 
the semidiurnal band. Complex empirical orthogonal 
functions (CEOFs) are used to describe the coherent 
structures of variability in each frequency band. This 
technique uses the eigenvalues and eigenvectors of a 
cross-spectral matrix (or coherence matrix) to describe 
variability in terms of the independent coherent structures 
ranked by their contribution to the total variance (Wallace 
and Dickinson, 1972, Eriksen, 1985). Consideration is 
limited to frequency bands in which a single empirical 
mode dominates. This has the effect of eliminating 
incoherent fluctuations from calculations of eddy fluxes 
and their gradients. 

Internal Wave Structure 

Internal wave band fluctuations on the flank of 
Fieberling Guyot are dominated by the process of wave 
reflection from a sloping boundary. While linear theory 
for the ideal case of reflection off an infinite sloping 
plane is consistent with several aspects of this process, 
nonlinearities are clearly apparent as well (Eriksen, 
1995). Internal waves incident on a sloping boundary are 
obliged to change their wavenumber magnitude upon 
reflection. For downward rays incident from deeper 
water, reflection magnifies the vertical and onslope 
components of wavenumber.  This magnification is 
forced by the requirement to match the projection parallel 
to the slope of incident and reflected wavenumbers. 
Waves incident at arbitrary orientations to the sloping 
boundary are turned more normal to isobaths by 
reflection. The energy density of reflected waves is 
amplified over that of incident waves by the ratio of the 
vertical wavenumber amplification squared because both 
ray tube widths and group speeds are inversely 
proportional to the vertical wavenumber amplification. 
Reflected waves dominate the wave field due to energy 
density enhancement and the enhancement is greater 
nearer the internal wave critical frequency CTC where 
incident rays match the bottom slope. 
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10" 10' 
frequency (cph) 

Current toward 045T (cm/s) 

Figure 2. Spectra of the onslope (northeast) component of 
current on mooring F3 on Fieberling Guyot. Spectra are labeled 
by instrument number and depth and are arranged in order of 
depth from 95 m to 1435 m (where the anchor depth of the 
mooring was 1455 m). Scales are correct for the deepest 
spectral estimate (F321) and are successively offset by one 
decade for spectra at shallower depths. Smooth curves 
superimposed are the Garrett-Munk model estimates for the 
open deep ocean and serve as references fro the observed 
spectra. Their endpoints are at the inertial frequency/and the 
local buoyancy frequency N. Spectra are enhanced about the 
internal wave critical frequency ac = 0.42 cph. Intervals of 
95% confidence are based on frequency averaging of a multiple 
of 13 independent spectral estimates. 

The spectra of current in the onslope direction (i.e. 
normal to local isobaths) calculated from the records on 
F3, the heavily instrumented mooring in the internal 
wave cluster on the southwest flank of the seamount, 
indicate substantial departure from the Garrett-Munk 
model spectra that characterize deep open ocean spectra 
(Figure 2). The departure is strongest near the bottom 
and takes the form an enhancement at the local critical 
frequency ac = 0.42 cph. The enhancement around the 

critical frequency is evident even several hundred m 
above the bottom, while the spectrum from 95 m depth 
closely matches the Garrett-Munk prediction. A single 

CEOF describes half or more of the variance in each 
frequency band in the bottom 300m, from an octave 
below to an octave above the critical frequency (Eriksen, 
1995). When records from all depths on mooring F3 are 
decomposed into CEOFs, two frequency ranges stand out 
as being dominated by a single mode: a band from 24 
through 16 h and a band from about 4 to 1.5 h (Figure 3). 
Discussion of the longer period band motions is deferred 
until below. The shorter period band is centered on the 
local internal wave critical frequency. 

F3     225T     135T     Z 

Figure 3. Spectra of complex empirical orthogonal functions 
calculated from the eigenvalues and eigenfunctions of the 
coherence matrix of current and temperature records on 
mooring F3. The top curve gives the average spectrum and each 
curve below it depicts the energy density accounted for by 
successively higher empirical mode. A single CEOF dominates 
structure over a band from the diurnal peak to a period of 
roughly 16 h and also over a band from about 4 to 1.5 h period, 
as is evident in the distinct separation of the second curve from 
the top from all other curves below it over these ranges. 

Both spectra and the complex eigenfunctions that 
dominate variance near the critical frequency indicate 
that linear theory accounts for much of the behavior of 
motions in the internal wave band. Linear features 
include the transition between prominent upward and 
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offslope phase propagation at subcritical frequencies to 
downward and onslope propagation at supercritical 
frequencies. Waves are aligned across isobaths near the 
critical frequency, as expected by the linear theory of 
internal wave reflection off a sloping bottom. Linear 
theory is also consistent with the observed ratio of 
vertical to horizontal wavenumber for these 
eigenfunctions. 

Linear theory fails to account for the finite 
enhancement of spectra at the critical frequency itself, for 
the decay of spectral enhancement with height off the 
bottom, and the vanishing of wavenumber at the critical 
frequency rather than the presence of only very fine 
scales. Statically unstable conditions are frequently 
found in the bottom few hundred m on the seamount 
flank. More than 11% of Richardson number estimates 
over a 10 m separation are found to be negative while 
altogether more than 25% are less than 0.25. Shear and 
density gradient fluctuations near the critical frequency 
dominate variance in the internal wave band as well as 
overall variance. Internal wave reflection is responsible 
for wave breaking, hence loss from the wave field to 
dissipation and to production of potential energy 
(buoyancy mixing). The rate of potential energy 
production diminishes with distance from the bottom, 
suggesting a convergence of turbulent fluxes. 

Records from the internal wave array can be used to 
compute eddy fluxes of heat and momentum. Since the 
temperature-salinity relationship is well defined in the 
depth range of instruments on moorings F4 and F5 and 
those nearby on F3, temperature can reliably be 
converted to density to form fluctuation buoyancy b' 

where b' = -g (p - p) p0   is the departure from the mean 

with p signifying density, g density, mean quantities have 
an overbar, and reference values have a subscript zero. 
Since vertical velocity is not measured directly, a vertical 

2 
advection assumption b'+N w' = 0 is used, where N 

is the average buoyancy frequency. The possibility of 
estimating vertical eddy transport of buoyancy is, of 
course, precluded. 

The structure of eddy fluxes calculated from the 
dominant complex eigenfunction structure integrated 
across the internal wave band shows an offslope 
buoyancy transport that diminishes with distance from 
the sloping bottom (Figure 4, top left panel). 
Accompanying this flux are onslope and upward fluxes of 
momentum. These two results can be traced to the 
rotation in time of current vectors in the vertical plane 
normal to isobaths: their sense is to turn clockwise when 
viewed with shallow water on the right (Eriksen, 1995). 
The convergence of these fluxes suggests mean Eulerian 
flows, as discussed below. 

1st  CEOF  Integrated   Eddy  Fluxes 
Period  bands  =8.00-0.70h 
x>0  along   heading   =60°T 

^F3 

<vb>=0.1D 
FS5 

^F3 

<vV»>=5.00 
F*5 

.^F3 

<uV> = 5.00 
F(f5 

<vV> = 50.00 

Figure 4. Internal wave band eddy fluxes of momentum 
(lower six panels) and buoyancy (top two panels) calculated 
from the first CEOF describing variability within 300 m of the 
bottom at moorings F3, F4, and F5. Fluxes are drawn as 
vectors in the vertical plane along 60°T heading (the local 
onslope direction). Perturbation current components are taken 
as a right-handed triad with u in the onslope direction. Units 
given in the scale are cm2/s2 for momentum and cm2/s3 for 
buoyancy fluxes. 

Diurnal through Semidiurnal Structure 

A single empirical mode dominates flow structure in 
the diurnal and semidiurnal tidal frequency bands, but 
also over a broad range of periods from diurnal 
(subinertial) to about 16 h (superinertial). The dominant 
mode has similar, but not identical, structure throughout 
this range. CEOF spectra illustrate the dominance of a 
single empirical mode at the tidal peaks Oj, Pi-K^ (the 
latter are indistinguishable in a one year record), M2, and 
S2 (Figure 3). They also illustrate the less pronounced, 

but still evident, dominance of a single mode from 
slightly subinertial (0.94f) to somewhat superinertial 
(1.46/) frequencies (where/= 1/22.385 cph is the inertial 
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frequency. The inertial frequency divides this range 
dynamically, since free internal gravity waves are 
possible only at superinertial frequencies. Despite this 
division, coherent bottom-trapped flow patterns of similar 
structure are found over a broad range of frequencies 
spanning it. 

The existence of a roughly cylindrically symmetric 
first azimuthal mode diurnal oscillation trapped near the 
summit at Fieberling Guyot has recently been 
documented. Brink, 1995, gives an interpretation in 
terms of radially and vertically standing free modes 
whereas Kunze, 1995, noted the predominance of 
downward propagating phase in the clockwise 
component of current, consistent with the pilot mooring 
results (Eriksen, 1991). Similar flow structures appear 
over a broad range of frequencies, not simply at the 
diurnal tidal lines. Moreover, downward propagating 
phase is a consistent feature of these oscillations. 

Above the seamount summit and near the summit rim, 
currents are nearly circularly polarized in the clockwise 
sense both at the diurnal tidal frequencies and across the 
continuum from diurnal to a frequency 50% above 
diurnal. The higher the frequency in this band, the more 
eccentric the current ellipse. By contrast, currents near 
the bottom on the flank of the seamount are nearly 
rectilinearly polarized with flow nearly parallel to the 
local isobaths. Current component and vertical 
displacement amplitudes tend to be highest at depths 
between those of the summit and the summit plain rim 
(Figure 5), even when scaled in a WKBJ sense by the 
local stratification, with the exception that amplitudes 
tend to rise sharply at the bottom. (Following the 
stretching convention of Kunze, 1995, the reference 
buoyancy frequency is 3 cph and depths are stretched 
from the ocean surface; the seamount summit (444 m) is 
at 570 stretched m and the summit plain rim (700 m) is at 
750 stretched m.) The total range of amplitudes is rather 
small, only a factor of two or so. 

The CEOF decomposition describes the temporal 
relationship between measured quantities through their 
relative phases. Current component and displacement 
phases all tend to increase with depth (Figure 6) 
indicating downward phase propagation. The rates of 
change of phase are different for the different flow 
components because their relative phases differ with 
position. For example, offslope (southwestward) current 
lags alongslope (southeastward) current by roughly 90° 
near the summit but is nearly in phase with it at depth, 
hence phase change rates with depth are different for the 
two components. The rate of phase increase with depth 
for the azimuthal component of flow gives a stretched 
vertical wavenumber of about 1 cycle per stretched 
vertical km downward at 24 h period. At 16 h period, the 

Eigen function  Amplitudes 

^/V(N/N0; 

u/V(N/N0) 

Figure 5. WKBJ scaled current and vertical displacement 
eigenfunction amplitudes for the first CEOF mode on mooring 
F3. The three panels give scaled amplitudes for the offslope 
component u (bottom panel), the alongslope component in the 
anticlockwise direction around the seamount v (middle panel), 
and upward displacement times buoyancy frequency Nx\ (top 
panel).. Depth is stretched by the local buoyancy frequency 
with a reference NQ = 3 cph. The upper three estimates are 
from depths near the summit, the fourth is from just below the 
summit rim, and the five deepest estimates are from near the 
bottom along the seamount flank. Independent frequency 
estimates, labelled by period in h, are successively offset by 0.5 
in amplitude. 

wavenumber magnitude is reduced to about 2/3 cycle per 
stretched vertical km. 

The amplitudes and relative phase between offslope 
(equivalent to radial in cylindrical geometry) current and 
vertical displacement determine the contribution to eddy 
buoyancy flux from each frequency band. Kunze, 1995, 
notes that eddy buoyancy flux from diurnal period 
oscillations is in the offslope direction. The CEOF 
formalism allows eddy fluxes to be calculated from the 
coherent fluctuations of current and temperature across 
the moored array. We use records from the three 
moorings C, R3, and F3 to describe the onslope-vertical 
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Eigenfunction   Phases 

-180.-90.   o.        90.      180. 
Phase  u 

Figure 6. First CEOF mode current and vertical displacement 
eigenfunction phases on mooring F3 plotted against WKBJ 
stretched depth as in Figure 5. The three panels give relative 
phases for the offslope component u (bottom panel), the 
alongslope component in the anticlockwise direction around the 
seamount v (middle panel), and upward displacement times 
buoyancy frequency Nf\ (top panel). Phases have been adjusted 
by integral cycles to minimize implied wavenumber 
magnitude. Independent frequency estimates, labelled by 
period in h, are successively offset by 45° in phase. The phase 
convention is that more positive phases lag. 

1st  CEOF  Integrated  Eddy  Fluxes 
Period  bands  =28.00-11.20h 
K>0 along  heading  =60°T 

<ub'>=0.200 

<u'u'>= 100.00 <vV>=100.0C 

Figure 7. Diurnal through semidiurnal band eddy fluxes of 
momentum (lower six panels) and buoyancy (top two panels) 
calculated from the first CEOF describing variability at depths 
in a range about the summit depth at Fieberling Guyot using 
moorings C, R3, and F3. Fluxes are drawn as vectors in the 
vertical plane along 60°T heading (the local onslope direction). 
Perturbation current components are taken as a right-handed 
triad with u' in the onslope direction. Units given in the scale 
are cm2/s2 for momentum and cm2/s3 for buoyancy fluxes. 

structure of eddy fluxes (Figure 7). The onslope gradient 
of onslope buoyancy flux contributed by tidal and 
intertidal frequency oscillations (an integration from 28 
to 11.2 h periods, top left panel, Figure 7) changes sign 
from offslope in the region over the summit plain to 
onslope in the region over the seamount flank (over a 
depth range encompassing the summit). Likewise, there 
is a sign change in the onslope gradient of onslope eddy 
transport of azimuthal momentum (u'V) between the 
summit plain and the seamount flank as well. The 
vertical eddy flux of azimuthal momentum <vV) has 
the same vertical gradient above both the summit plain 
and the flank. The gradients of these eddy fluxes can be 
related to mean Eulerian flows through the equations for 

azimuthally and temporally averaged flow, expressed in 
cylindrical coordinates: 

V2 

UU +WU - — -fV-Pr r z     f    J       r 

1/    ,2,      , .   »      <v,2> = — (ru ) -<«W> +-—- 

(1) 

z       r 

UV. 
UV 

r + WVz + ^ +fU = - (u'v')r - (w'v')z      (2) 

UWr + WWz - Pz = - -r (ru'w')r + (w,2)z (3) 
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W, ■N2 = \{ru'b')r Wb\ (4) 

where (r,6,z) and (u,v,w) are the offslope, alongslope, and 
vertical coordinates and velocity components, upper case 
quantities designate means, primed quantities indicate 
fluctuations, brackets denote averages, subscripts denote 
derivatives, N is buoyancy frequency, / the Coriolis 
parameter, and P is pressure. In the limit of weak mean 
flows, the nonlinear terms on the left sides of (1) through 
(3) can be neglected in favor of the balances 

U = f1 (- (u'v')r - (w'v')z) (from (2)) and (4) to give 

a mean onslope-vertical circulation. Noninteraction 
theorems (Mclntyre,1980) caution that such an Eulerian 
circulation is exactly compensated by an opposite Stokes 
drift in the case that the fluctuations take the form of 
steady, inviscid, unforced waves. Nevertheless, current 
meters sense Eulerian flow, hence the spatial structures of 
coherent buoyancy and momentum fluxes indicated in 
Figures 4 and 7 may be expected to produce flow in the 
offslope-vertical plane. Estimates of these wave-induced 
flows are compared with measured mean flows in the 
following section. 

Mean Flows 

One year mean flows measured by current meters near 
the bottom on Fieberling Guyot tend to have an offslope 
component over the summit plain (at sites C, R2, and R3; 
see Brink, 1995) and onslope component over the flanks 
(at sites F2 and F3). Mean currents farther from the 
bottom tend to be more parallel to isobaths, although the 
orientation of bottom contours is depth dependent due to 
departures of the topography from perfect radial 
symmetry. 

Currents at site R2 on the northwest side of the 
seamount (Figure 8) show the mean anticyclonic 
circulation above the summit region as a flow most 
intense about 105 m above the bottom (535 m depth). 
The current spiral turns leftward with depth at this site 
and current within the strongest part of the anticyclone 
appears to be parallel to the bottom contours. Flow 
closer to the bottom is offslope at roughly 1 cm/s while 
flow above the anticyclone maximum appears onslope at 
about the same rate. Mean current at site R3, also on the 
summit plain rim, is similarly sheared, with an offslope 
component near the bottom of about 1 cm/s as a 
departure from otherwise alongslope flow in the 
anticyclonic sense around the seamount (Figure 9). The 
mean flow 50 m off the bottom (535 m depth) is 10.3 cm/ 
s in contrast to 12.4 cm/s found at the same depth, but a 
greater distance from the geometric center of the 
seamount, at site R2. 

Mooring R2 

Figure 8. Mean flow over one year starting October 1,1990, at 
15, 35, 55, 75, 95, 115, 135, 155, 175, and 195 m above the 
bottom at the ADCP mooring site R2. Vectors are shaded in 
order of depth (the closest to bottom is solid). Depth contours at 
10 m intervals are based on a Hydrosweep survey and the 
mooring position is based on acoustic and undithered GPS 
navigation. (Surveyed depth exceeds that inferred from the 
moored pressure record by 6 m at this site.) 

Mean current on the flanks of the seamount is weaker 
and is directed slightly in the onslope direction, in 
contrast to the flow near the summit plain rim (Figure 
10). Records from various locations within the internal 
wave array on the southwest flank have onslope flow 
components of up to about 0.2 cm/s. None of the 
currents measured within 160 m of the bottom over one 
year indicates an offslope component of flow. Moreover, 
the observed current vectors suggest an onslope 
component of flow even when compared to nearby 
isobaths of corresponding depth. Progressive vector 
diagrams (not shown) indicate that onslope flow exists 
even when the alongslope current is in the opposite sense 
for a few days or more. 

Alongslope currents near the bottom tend to be 
modulated with a fortnightly signal in phase with the 
diurnal tidal current amplitude, although they vary also 
with low frequency flow impinging on the seamount 
(Eriksen, 1991, Brink, 1995, Kunze, 1995). That is, 
when diurnal fluctuations are strong, the anticyclone atop 
Fieberling is strong and conversely. This suggests that 
circulation near the seamount is, at least in part, due to 
rectification of tidal fluctuations. The onslope component 
may also be influenced by fluctuations, diurnal and 
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Mooring R3 Internal Wave Array 

127' 48'W 12T47W 

Figure 9. Mean flow over one year starting October 1,1990, at 
20 and 50 m above the bottom at the mooring site R2. The 
deeper vector is solid. Depth contours at 10 m intervals are 
based on a Hydrosweep survey and the mooring position is 
based on acoustic and undithered GPS navigation. Surveyed 
depth exceeds that inferred from moored pressure records by 3 
m at this site. 

otherwise. Codiga, 1993, found subinertial oscillations to 
rectify into producing a low frequency anticyclonic swirl 
in a laboratory simulation. 

The eddy fluxes in the vicinity of the summit plain rim 
are dominated by tidal, especially diurnal, fluctuations. 
The gradients in offslope buoyancy flux above the 
summit plain and the flank imply mean Eulerian 
downwelling of about 50 m/day and upwelling of 5 m/ 
day, respectively, in the two regions according to the 
balance in (4), neglecting vertical mixing. Given the 
slope on the summit plain of about 0.05, about 1.2 cm/s 
of offslope flow is implied by mass conservation in the 
radial vertical plane, rather close to the flow observed 
(solid arrows, Figures 8 and 9) The linearized version of 
(2) relies on the vertical gradient of vertical eddy 
transport and radial gradient of radial transport of 
alongslope momentum to balance Coriolis acceleration. 
Referring to the two middle panels of Figure 7, both 
gradients appear of different sign at different locations. 
Since it is die sum of two terms, each of uncertain sign, 
that determines mean flow, no reliable estimate of radial 
flow can be made from this balance. The buoyancy flux 
structure, however, appears of the correct sign and 
magnitude to explain the offslope flow found near the 
bottom at the rim. 

127'50'W 

Figure 10. Mean flow over one year starting October 1,1990, at 
20 to 160 m above the bottom at the internal wave array sites. 
Currents 20 m from the bottom are drawn with a solid vector 
with currents farther off the bottom shaded more lightly to a 
height of 160 m, where vectors are unshaded. Instrument 
heights from the bottom are 20, 30, 40, 60, and 120 m off the 
bottom on F3,160 m off the bottom on F4, and 40, 90, and 160 
m off the bottom on F5. Depth contours at 10 m intervals are 
based on a Hydrosweep survey and the mooring position is 
based on acoustic and undithered GPS navigation. Surveyed 
depth exceeds that inferred from moored pressure records by 40- 
45 m at this site. 

The eddy flux structure near the bottom on the flank 
also suggests an Eulerian mean flow of the sign observed, 
but due to internal wave rather than tidal processes. 
Radial buoyancy flux is in the offslope sense due to 
internal wave fluctuations (top left panel, Figure 4) and 
diminishes with distance from the bottom, whether 
offslope or vertical. The magnitude of vertical eddy 
buoyancy flux by wave breaking and the scale over 
which it changes implies that it can be neglected as a 
source of induced upwelling in the balance (4). The 
convergent pattern of radial buoyancy flux implies an 
upwelling of roughly 13 m/day. This, together with the 
bottom slope within the internal wave array of 0.45 
implies an onslope flow of about 0.03 cm/s. This 
estimate is at least a factor of 3 weaker than what is 
observed directly. The linear version of the azimuthal 
momentum balance (2) on the flank is clearer than it is 
near the summit rim. The two flux gradient terms 
partially offset one another, but vertical gradients of 
vertical transport are somewhat larger than offslope 
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gradients of offslope transport of alongslope momentum. 
The difference implies an onslope mean flow of about 0.3 
cm/s, a factor of 3 or so larger than what is measured 
directly. The mass and azimuthal momentum balances 
predict onslope flows that bracket that is observed 
directly, while neither balance agrees well with the 
current meter observations. 

Trapped Waves over a Sloping Plane 

The fluctuations observed at Fieberling Guyot span a 
relatively broad frequency range that includes the inertial 
frequency. While Brink, 1989, has found free resonant 
solutions trapped to a seamount, these are restricted to 
subinertial frequencies. Kunze, 1995, has suggested that 
the diurnal frequency fluctuations at Fieberling are 
dynamically superinertial waves confined to the 
anticyclonic vortex near the seamount summit. Although 
vortex trapped waves support a radial buoyancy flux and 
vertical phase propagation, both observed features, the 
observed waves extend to the bottom on the seamount 
flanks well beyond where the vortex is found and exist at 
superinertial frequencies where they could not be trapped 
by a vortex with only anticyclonic vorticity. Radial- 
vertical seamount trapped modes support neither radial 
buoyancy flux nor vertical phase propagation, but they do 
extend to the bottom. Brink, 1990, considered a forced 
problem, where the seamount response is a superposition 
of standing modes each excited off resonance, but the 
forcing was only at the diurnal (subinertial) frequency. 

The purpose of this section is to point out that bottom- 
trapped waves can exist at both subinertial and 
superinertial frequencies that exhibit vertical phase 
propagation and support onslope heat flux, at least in 
infinite sloping plane geometry. Rhines, 1970, found the 
special case of these waves that satisfies no normal flow 
at the bottom and propagates freely both along and across 
isobaths, but always with shallow water to the right. 
Since motion is everywhere parallel to the bottom and 
rectilinear, these waves cannot support an onslope 
buoyancy flux. Propagating rays of this type at the same 
frequency can be combined to form vertical-onslope 
standing modes. Whether propagating or standing, these 
wave modes can be though of as a Kelvin wave 
generalized to continuous stratification over a sloping 
plane bottom. The more general form of these waves 
does not satisfy the simple slip boundary condition, 
hence these must be forced by normal flow at the 
boundary. They are evanescent waves. They do support 
onslope buoyancy flux, appear to propagate along the 
boundary, and can exist over a range of superinertial and 
at all subinertial frequencies. They are the response to 
periodic normal flow forced at the boundary. 

The linear inviscid equations of motion in a uniformly 
stratified fluid over an infinite planar bottom can be 
written as: 

-fv = -px (5a) 

(5b) vt+fu = -Py 

N w + w tt zt 

u +v +w   = 0 x     y       z 

(5c) 

(5d) 

where (u,v,w) specifies the onslope, alongslope, and 
upward current components of flow in a right-handed 
coordinate system, p is reduced pressure, and N and/are 
the buoyancy frequency and Coriolis parameter. 
Propagating plane wave solutions that are trapped to a 
planar bottom with slope s specified by z=sx exist when 

,, i(kx+ly + mz-at)  K(sx-z) 
u,v,w and p all vary as e e 
where (k,l,m) specify (real) wavenumber components and 
Ks and K are the (real) offslope and upward decay rates. 
(The decay scale normal to the boundary  is 

-1 
K41 + S or 

cos a 
K 

where s = tana.) The system 

of equations (5) reduces to: 

Q^Pxx+PyJ   =Pzz 
2      2 

N  -a 

(6) 

where Q = 
-/■ 

Evanescent solutions to (6) are 

possible because two wavenumber components (onslope 
and vertical) are complex, while the third (alongslope) is 
real. Such solutions describe waves trapped to the 
boundary when the dispersion relations 

^2       n 2 

—    = -Qs 
K J 

cos    cp + 
V 

.    2 
sm    cp 

and 
m 
k 

= -Qs 

are satisfied, where K 

wavenumber     magnitude 

(7a) 

(7b) 

2     2 
k +1   is the horizontal 

and     the 

the real wavenumber direction in the horizontal plane 

cp = Cos   f-J = Sin   (-1 = Tan 

angle 

specifies 

71 (<p = 0 is an onslope wave, <p = - is an alongslope 

wave with shallow water on the right). For a given 
pressure signal p, the current components are: 

Kp   f ■( r ■        oKs\ 
u = -jpi o-costp + il/sinqp-— J 

a  -I 

(8a) 
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Kp v =  -— 

KP 

rjsintp 
fKs ifcos <p 

oscoscp 
GK 

(8b) 

(8c) 

a-/ 
Solutions are valid for all direction angles cp for 

subinertial frequencies a </ but for only the restricted 
range of angles for which K remains real and positive in 
the range f<o<a , that is, at superinertial frequencies 

less than the internal wave critical frequency a   where 

l~2       2       2       2 
o =<JN sin    a + f cos    a.   While these waves 

c J 

decay normal to the sloping bottom, phase lines are tilted 
upward and offslope at subinertial frequencies and 
upward and onslope at superinertial frequencies. They 
are level in the onslope-vertical plane at the inertial 
frequency. In the limit of vanishing frequency, phase 

lines attain an offslope-upward tilt of ■*-=- ■ In the limit 
fTs 

of the critical frequency, phase lines are parallel to the 
sloping bottom in the onslope-vertical plane. 

The special case of these waves for which flow is 
everywhere parallel to the boundary, i.e., w = su, 

requires that: 
2f 

Qs *-sincp 
Ks _        a m\ 

Qs  - 1 
This restriction recovers the Rhines,1970, solution for 
edge waves. These are restricted to positive alongslope 
wavenumbers />0 and to frequencies a < N sin a, a more 
restrictive range than for evanescent waves. 

The quantity — appearing in (7 a) and (9) is the ratio 

of the horizontal length scale of the wave to its offslope 
decay scale. Large values of this ratio indicate that 
waves decay in only a fraction of a horizontal wave scale, 

thus are tightly bottom trapped.   Contours of — 

calculated for parameters relevant to the summit region 
of Fieberling Guyot indicate that trapping is relatively 

gentle (i.e. — ~ 1) for most wave orientations at 

superinertial frequencies and for orientations close to the 
alongslope direction at subinertial frequencies (Figure 
11). While evanescent waves of any direction are 
possible at subinertial frequencies, the range of directions 
is tightly confined to alongslope at slightly superinertial 
frequencies, but broadens to nearly any direction close to 

the internal wave reflection critical frequency. Note that 

directions with an onslope component (—z < (j) < ^) 

correspond to upward propagation at subinertial 
frequencies and downward propagation at superinertial 
frequencies and conversely for directions with an 

offslope component (^<cp<y) by (7b) since Q 

changes sign (from -°° to +~) across the inertial 
frequency. Figure 11 is drawn only for the first two 
quadrants in direction because of these symmetries. 

Ksfcfor s - 0.04, N = 2.2 cph, f = 1/22.32 cph 

Figure 11. Ratio of horizontal length scale to offslope decay 
scale for evanescent waves as a function of frequency a 
horizontal wavenumber vector orientation <p. Dispersion curves 
for edge waves are superimposed as heavy curves. Parameters 
are relevant to the summit region of Fieberling Guyot. Dashed 
lines mark the internal wave critical frequency (the maximum 
evanescent wave frequency), the maximum edge wave 
frequency, and the lunar semidiurnal and the lunisolar diurnal 
tidal frequencies. The ratio is not contoured where evanescent 
waves are not possible. Small ratios correspond to weak 
trapping. The orientations <p=0° and 90° correspond to pure 
onslope and alongslope (with shallow water to the right) 
propagation, respectively. Superinertial-onslope and subinertial- 
offslope waves propagate downward, and conversely. 
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Edge waves, however, are restricted to the range of 
directions plotted (all alongslope with shallow water to 
the right ioif>0). These dispersion curves are drawn on 
the same set of axes as heavy curves in Figure 11. For 
the slope, stratification, and rotation parameters relevant 
to the summit region of Fieberling Guyot (J=0.04, N=2.2 
cph,/= 1/22.32 cph), edge waves are moderately trapped 
over their complete frequency range. 

Both diurnal and semidiurnal tidal frequencies fall 
within the range of possible evanescent and edge wave 
frequencies (Figure 11). Diurnal frequency motions are 
only slightly subinertial and, as such, will be strongly 
trapped for all orientations except those nearly 
alongslope. Diurnal edge waves are aligned 3.6° onslope 
and offslope from the alongslope direction. At 
superinertial frequencies, the range of possible 
orientations broadens with increasing frequency. 
Semidiurnal edge waves attain nearly the most cross- 
isobath orientation possible over the possible range of 
superinertial frequencies. These and evanescent waves 
are weakly to at most moderately trapped to the bottom at 

superinertial frequencies (Note 0< — <2 for 

superinertial frequencies in this case). 
Evanescent and edge wave amplitudes in pressure p 

can be expressed in terms of the energy density of the 
waves. The average energy per unit frequency per unit 
surface area normal to the slope E is 

E = 

■4a/-— sincp + l a  + N) 

where (PP*) is the variance in reduced pressure per unit 

frequency at the bottom z = sx . The energy density E 
is a sum of potential and horizontal and vertical kinetic 
energies averaged over a wave period. Given the energy 
density E, the component amplitudes (u,v,w) appearing in 
(8) can be found by interpreting the amplitude of p as the 
standard deviation of pressure found in a specified 

frequency band from the spectrum (PP*) since 
IK (sx — z) 

(pp*) = {PP*)e . Normalization by energy 
density E allows currents associated with waves of 
different frequency or wavenumber to be compared, as 
with the current ellipses discussed next. 

The current ellipse signature of evanescent waves 
varies considerably with wave orientation and frequency. 
The current ellipses in the horizontal and vertical-onslope 
planes for diurnal evanescent waves over a small range of 
wavenumber vector orientations (79.2°«p<90°) that 

includes the edge wave orientation are given in Figure 
12. Horizontal ellipses and horizontal projections of 
wavenumber vectors are given in the top row of this 
figure for waves directed onslope. Vertical-onslope 
current ellipses (with a vertical exaggeration of 10) are 
given in the second row. The lower two rows display the 
corresponding ellipses for waves with offslope senses. 
The sense of rotation of the current vectors changes in 
both the horizontal and onslope-vertical planes depending 
on whether waves are directed more or less onslope or 
offslope than the edge wave. In general, current ellipses 
in the vertical-onslope plane intersect the bottom, 
demonstrating the need for motions to be forced normal 
to the bottom in order to excite evanescent waves. Edge 
waves have flow everywhere parallel to the bottom, so 
can exist as free waves. The ellipses of Figure 12 indicate 
how minor departures from no normal flow at the bottom 
can induce substantial horizontal current fluctuations. 

<S- %~ ' 
X^\ -U3 _ 

ort.093       Ji0o-2*C0hre      c^-220    s-OW        M.i 

Evanescent Wave Current Ellipses and Wavenumber Vectors 

Figure 12. Current ellipses for evanescent waves of various 
orientation relative to isobaths at a fixed (diurnal) frequency. 
The top row shows current ellipses in the horizontal plane along 
with the horizontal projection of the wavenumber vector. The 
Second row shows corresponding current ellipses and the 
bottom slope in the onslope-vertical plane, exaggerated tenfold 
vertically. From right to left in each row, waves are directed 
more onslope and upward in the top two rows. The bottom two 
rows are the corresponding ellipses for waves directed 
increasingly offslope and downward from right to left. Waves 
are normalized to have equal energy. 

Current ellipses for evanescent waves generally are not 
aligned with the wavenumber vector orientation. Waves 
travelling parallel to isobaths have current ellipses 
oriented normal to them, but in general horizontal 
ellipses and wavenumber vectors are not normal to one 
another. Edge waves not only have flow everywhere 
parallel to the bottom, but also have rectilinear flow 
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(ellipses collapse to straight lines). Pairs of rays with 
horizontal wavenumber vectors symmetric about the 

alongslope direction (i.e. <p = ± ^ ± 0) can be summed 

to form standing modes in the vertical-onslope plane. In 
the case of standing modes, horizontal and vertical 
ellipses are oriented either parallel or normal to isobaths 
and the horizontal plane, respectively. Whereas 
individual rays can carry onslope or offslope momentum 
and buoyancy fluxes, standing modes cannot. 

h 
The horizontal buoyancy flux F = {u'b') of a 

propagating evanescent wave component is 

_ \yg_j_       VK ^     smtp-s  +_}    (11) F 

2  a -/): 
oK Q1 

The expression in curly brackets vanishes for edge 
waves, by (9). If the mean buoyancy balance is given by 

WN   = -~-F  ,(the rectilinear version of (4), but 
ox 

without vertical mixing), then the mean Eulerian 
b   -2 

upwelling induced by the waves is W = -KsF N    . 
By continuity, U=Wls. This Eulerian flow parallel to the 
bottom and decreasing exponentially from it with a scale 

cosa(2K)     , is exactly offset by the Stokes drift 

components \u,w\ which are equal and opposite to 

(U,W), in accordance with the predictions of 
nonacceleration theorems. So, while a mean Eulerian 
onslope or offslope flow can be induced by linear 
inviscid evanescent waves, there is no net Lagrangian 
circulation so induced. If mixing is introduced, the 
resulting non-zero Lagrangian mean circulation can be 
expected to have scales comparable to the domain in 
which the evanescent oscillations are found. 

Discussion 

The flow found near Fieberling Guyot is dominated by 
relatively narrow-band signals, and in this it is probably 
not unusual for a seamount. It is in strong contrast to 
open deep ocean flows, where mesoscale eddy motions 
tend to dominate current variance. The three strong 
characteristics of currents at Fieberling are 1) the mean 
anticyclone near the summit, 2) the diurnal-inertial- 
semidiurnal band of structurally similar flows, and 3) the 
near-critical reflection internal wave band. That 
fluctuations in the summit anticyclone modulate with the 
spring-neap cycle suggests that wave processes are 
important to its existence. Estimates of mean circulation 
in the vertical-radial plane based on eddy flux gradients, 
albeit crude, are in rough agreement with the horizontal 

currents measured directly. These suggest a pattern of 
downwelling above the summit plain and upwelling on 
the seamount flanks. There is no strong evidence that 
these flows are other than Eulerian means induced by the 
presence of bottom intensified wave motions. The level 
of mixing found by Eriksen, 1995, and the vertical scale 
over which it varies together are too small to produce 
mean flows even as big as the Eulerian flows observed. 

Both internal wave band and diurnal motions effect 
measurable offslope buoyancy fluxes. Internal waves 
reflect off the steeply sloped flanks of the seamount in 
such a way as to generate rotary motions of current 
vectors in the vertical-onslope plane to generate offslope 
buoyancy flux near the bottom that decays with distance 
from it. Since these motions are strongest near the 
bottom, their decay implies a convergence of buoyancy 
flux, hence an induced (at least Eulerian) upwelling to 
compensate for it. The vertical gradients vertical 
buoyancy flux implied by the observed rate of density 
overturns are substantially weaker than observed 
horizontal gradients of offslope buoyancy flux. 

Diurnal motions in the vertical onslope plane reach a 
maximum a hundred or more m above the seamount 
summit plain and at a finite radial distance from the 
seamount center, however roughly it can be defined. The 
offslope buoyancy flux these motions carry has gradients 
of both signs, implying downwelling at small radii (over 
the summit plain to about the rim) and upwelling outside 
this region, with the upwelling region more concentrated 
than that of downwelling. While there is considerable 
turbulent mixing reported above the summit plain, the 
magnitude of its gradients are weak compared to those of 
offslope buoyancy flux. 

Neither the free seamount trapped wave whose 
resonant frequency is closest to the diurnal frequency (29 
h period, according to Brink, 1995), nor the vortical 
trapped wave of Kunze, 1995, completely explains the 
nature of the diurnal and up-to-slightly-superinertial 
motions observed at Fieberling Guyot. The principal 
shortcomings of the seamount trapped wave model of 
Brink, 1990, are the failure to account for the observed 
phase propagation, offslope buoyancy flux, and 
frequency bandwidth (superinertial as well as subinertial) 
of the motions at Fieberling. The vortex-trapped wave 
model of Kunze, 1995, accounts for downward phase 
propagation and offslope buoyancy flux, but cannot 
account for these features at superinertial frequencies nor 
at depths and radii well removed from the near-summit 
intensified anticyclone. 

An examination of uniformly stratified rotating flow 
over a planar sloping boundary demonstrates that, at least 
locally, evanescent and edge waves are possible at both 
subinertial and superinertial frequencies. These waves 
are bottom trapped with scales that can be comparable to 
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the degree of trapping observed at Fieberling. They can 
propagate vertically and horizontally with scales that are 
also comparable to those observed at Fieberling. The 
possibility of trapped wave motions at superinertial 
frequencies occurs because even though the governing 
equation (6) is hyperbolic for o>f(Q>0), two complex 
wavenumber components can be offset by a real third 
component, hence waves can be trapped in two 
dimensions, and propagate in the third. These waves are 
possible in addition to free internal gravity waves (which 
propagate in all three dimensions). The possible 
generalization of this solution to arbitrary stratification 
and bottom boundary shape is not clear. Nevertheless, 
evanescent waves can be expected to be supported where 
stratification and bottom slope are locally uniform. 

The response of a seamount to externally imposed 
flow is equivalent to forcing flow normal to the bottom at 
the bottom. The prominent responses found at Fieberling 
are at the diurnal and semidiurnal tides. The forced 
response of a linear, inviscid system can be calculated by 
the projection of forcing onto the normal modes of the 
system. This approach was followed by Brink, 1990, 
where the response away from resonance was calculated 
as the sum of phase-locked free modes. Seamount 
trapped waves form a complete discrete basis set and the 
projection of forcing at arbitrary frequencies defines the 
contribution of each mode to the total response. While 
individual modes are standing in the vertical-offslope 
plane, the phase-locked sum of such modes should lead 
to apparent vertical-radial phase propagation at arbitrary 
locations. Curiously, the Brink, 1995, solutions do not 
indicate sufficiently robust phase differences to match 
observed phase changes. Brink's normal modes are 
subinertial only so that if superinertial trapped free modes 
are possible, they may contribute to forced response as 
well. 

The ray solutions of evanescent waves at a particular 
frequency can be summed over a variety of wavenumber 
orientations to produce a response that not only exhibits 
phase propagation, but varies the shape of current ellipses 
with distance from the bottom. Such a response could be 
formed by forcing with an arbitrary waveform at a 
particular frequency. 
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Abstract. Fine- and microstructure profiles collected over Fieberling Seamount at 32°26'N in the eastern 
North Pacific reveal (i) an anticyclonic vortex cap of relative vorticity -0.50/± 0.15/ (ii) intensified diurnal 
oscillations of 15 cm s_1, and (iii) elevated turbulence levels of eddy diffusivity Kp~ 10 X 10"4 m2 s_1 co- 
existing in a 200-m thick layer atop the summit plain. The vortex is not a Taylor cap because a strong negative 
potential vorticity anomaly is associated with it. It is at least partially maintained against Ekman downwelling 
by rectification of the diurnal oscillation as evidenced by its fortnightly cycle. The diurnal oscillation is 
slightly subinertial and driven by the barotropic K] and 0\ diurnal tides. It closely resembles a seamount- 
trapped topographic wave, but (i) its energy maximum is 50 m above the bottom, (ii) its horizontal velocity 
vector turns counterclockwise with depth, and (iii) there is a 180° phase difference between its radial velocity 
«,.' and the vertical displacement %' = -T'I' Tz , producing a net positive radial heat-flux <ur'T'>. These 
features are more consistent with an upward-propagating vortex-trapped near-inertial internal wave with a 
slightly subinertial frequency allowed by the strong negative vorticity of the vortex cap. This wave would be 
encountering a vertical critical layer at the top of the cap where its energy would be lost to turbulence. 
Observed turbulence levels imply decay times for the wave of ~3 days, emphasizing the strongly forced nature 
of this system. 

1. Introduction 

The peaks of seamounts have been found to be sites of 
enhanced near-bottom semidiurnal, diurnal, and inertial 
currents with moored current-meters (Noble et al, 1988; 
Noble and Mullineaux, 1989; Genin et al, 1989; Padman 
et al, 1992; Eriksen, 1991) and profilers (Kunze and San- 
ford, 1986; Kunze et al, 1992). These elevated velocities 
support abundant populations of benthic filterfeeders 
(Genin et al, 1986, 1992). However, little is known 
about how topography intensifies these currents. Kunze 
and Sanford (1986) interpreted their signal as a critically- 
reflected upward-propagating near-inertial wave based on 
the counterclockwise turning of the signal's horizontal ve- 
locity with depth. On the other hand, Genin et al (1989), 
Eriksen (1991), Noble et al (1994), and Brink (1995) re- 
port slightly subinertial diurnal tidal frequencies associ- 
ated with the dominant motions above Fieberling Guyot, 
so they advance that the fluctuations are seamount- 
trapped topographic waves. 

Sloping bottom topography will cause internal waves 
with characteristic slopes Cg./CgH = kH/kz identical to the 
bottom slope a to be critically reflected to high wave- 
numbers (Wunsch, 1969; Phillips, 1977; Eriksen, 1982; 
1985) and scattered (Baines, 1971; Bell, 1975; Gilbert and 
Garrett, 1989; Müller and Xu, 1992), dramatically am- 
plifying internal-wave shear and strain, and turbulence 
production. 

Sloping topography also allows bottom-trapped topo- 
graphic waves with frequencies CO < Nsincc (Rhines, 1970) 

although nonplanar bathymetry will not trap superinertial 
frequencies CO >/(Huthnance, 1978). Brink (1989, 1990) 
and Chapman (1989) formulated a model for stratified 
seamount-trapped topographic waves. They showed that 
the gravest mode for Fieberling Guyot's geometry and 
stratification is slightly subinertial and nearly resonant 
with the diurnal tide. 

A vortex cap is also expected over a seamount. Both 
potential vorticity-conserving Taylor cap dynamics 
(Hogg, 1973; Swaters and Mysak, 1985; Roden, 1987) 
and wave rectification over topography (Loder, 1980; 
Maas and Zimmerman, 1989a, 1989b; Haidvogel et al., 
1993) imply formation of an anticyclonic vortex over the 
seamount's summit. A Taylor cap would require an im- 
pinging geostrophic flow and, in the absence of damping, 
would have the same potential vorticity as the surrounding 
ocean. Stratification will limit the vertical extent of the 
vortex above the seamount (Zyryanov, 1981; Chapman 
and Haidvogel, 1992) to H =flJN ~ 100 m for/= 7.8 x 
10~5 s"1, the buoyancy frequency N = 4.3 x 10~3 s_1, and 
the radius of the seamount summit L = 7 km. 

To better understand the impact of seamounts on 
internal waves, tides, and turbulent mixing, fine- and 
microstructure profiles were collected over Fieberling 
Guyot during March 1991 (Montgomery and Toole, 
1993). Here we use the profile time-series and surveys to 
characterize the temporal and spatial structure of the co- 
existing vortex cap, diurnal oscillations, and turbulence 
atop Fieberling Guyot's summit plain. 
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The vortex cap is ~200-m thick and has core vorticities 
C, = -0.50/± 0.15/ The presence of the anticyclonic vor- 
tex cap raises the possibility that the observed diurnal os- 
cillation is not a seamount-trapped topographic wave but a 
vortex-trapped near-inertial internal wave (Kunze, 1986; 
Kunze et ai, 1995; Appendix A). 

The coinciding diurnal shear layer is also 200-m thick. 
Maximum velocities of 15 cm s_1 are found 50-100 m 
above the bottom over the summit plain, unlike the bot- 
tom-intensified seamount-trapped wave (Brink, 1995). 
This signal decays rapidly as one moves radially off the 
summit. At any instant and depth, the horizontal velocity 
of the diurnal wave forms a unidirectional jet over the 
summit plain. This horizontal structure is consistent with 
either a gravest seamount-trapped mode (Brink, 1990) or 
a gravest vortex-trapped internal wave mode (Kunze et 
ai, 1995). The velocity vector turns counterclockwise 
with depth over the entire 200-m thick layer of intensified 
motion. This turning corresponds to a vertical wavelength 
Xz= 250 m. If interpreted as a vortex-trapped near-inertial 
wave, it implies upward energy propagation. It contra- 
dicts Brink's predicted turning of only -90° confined to 
within 50 m of the bottom due to a time-dependent bottom 
Ekman layer. 

Elevated turbulence levels of e ~ 10"7 W kg"1 are found 
coincident with the vortex cap and the diurnal oscillation, 
corresponding to eddy diffusivities of 10 x 10-4 m2 s_1. 
This is sufficient to drain the wave in ~3 days if it is the 
energy source for the turbulence. The eddy diffusivity 
over the summit plain is not sufficiently enhanced for 
seamounts to play a dominant role in global mixing of the 
pycnocline. 

2. Trapped Wave Models 
Two extant models may describe the diurnal shear layer 

observed above the summit plain of Fieberling Guyot 
—seamount-trapped topographic waves (Brink, 1989, 
1990) and vortex-trapped near-inertial internal waves 
(Kunze et ai, 1995; Appendix A). These two types of 
waves share many properties in common and their observ- 
able differences are subtle. 

2.1 Seamount-Trapped Topographic Waves 

Brink (1989, 1990) and Chapman (1989) formulated a 
model for seamount-trapped waves on tall seamounts in a 
stratified, rotating fluid, extending the barotropic models 
of Rhines (1969), Huthnance (1974), Hunkins (1986), and 
Kowalik (1994). These waves are bottom-trapped topo- 
graphic waves (Rhines, 1970) wrapped around a seamount 
so that their along-isobath wavenumber is quantized. 
Laboratory experiments (Codiga, 1993; Boyer and Zhang, 
1990; Zhang and Boyer, 1993) and numerical simulations 
(Haidvogel et ai, 1993) have verified generation of 

seamount-trapped oscillations by barotropic subinertial 
forcing in stratified, rotating fluids. 

For the stratification profile and geometry of Fieberling 
Guyot, Brink showed that the gravest-mode (highest fre- 
quency) seamount-trapped wave had a slightly subinertial 
frequency that was nearly resonant with the diurnal tide. 
This mode evanesces rapidly away from the bottom with a 
vertical decay scale of ~50 m and a radial decay scale of a 
few kilometers (radial mode 0). It propagates clockwise 
around the seamount with azimuthal mode n = -1. The 
first azimuthal mode is most likely to be excited by 
largescale forcing because it has flow in the same direc- 
tion on opposite sides of the seamount (Brink, 1990). The 
resulting jet rotates clockwise in time. Observationally, 
Brink's predictions are consistent with the diurnal fre- 
quency and horizontal structure of the dominant velocity 
fluctuations above the summit plain of Fieberling Sea- 
mount (Eriksen, 1991; Noble etal., 1994; Brink, 1995). 

Of particular importance for distinguishing gravest 
seamount-trapped waves from vortex-trapped waves is 
that their radial velocity Mr'and vertical displacement cj' 
signals are 90° out of phase (section 2.2). This implies 
that inviscid seamount-trapped waves have zero radial 
heat-flux < ur' T >. Also, the horizontal velocity vector 
undergoes 180° reversals, but no turning, with depth. The 
addition of bottom friction might produce a counterclock- 
wise-turning-with-depth, time-dependent benthic Ekman 
layer of thickness and turning scale 

ih~feff\ 
O) 

(Maas and van Haren, 1987), where the intrinsic fre- 
quency co,= co£- nV6/r ~ (0£ -n^/2 = Kx +£/2co£is 
the Eulerian frequency, Ve is the horizontal velocity of the 
vortex, and/jj- =/ + £,. However, (1) depends on the 
profiles of turbulence and stratification. Eddy viscosity 
will also alter the phase relations but only by a few de- 
grees (Appendix C). 

2.2 Vortex-Trapped Near-inertial Internal Waves 

The anticyclonic vortex above the summit plain with 
core vorticity -0.50/ is sufficient to reduce the lower 
bound of the internal waveband from the planetary 
Coriolis frequency / to an effective Coriolis frequency 
feff= /+ C (Weiler, 1982; Kunze, 1985; Kunze, 1986), 
well below the diurnal frequencies Kt = 0.933/= 1.87/# 

and O, = 0.865/= l.Tifeff. This allows diurnal frequencies 
to propagate as near-inertial internal waves within the 
confines to the negative vorticity core. Kunze et al. 
(1995) formulated a model for a vortex-trapped near- 
inertial radial mode while investigating near-inertial wave 
critical layers in a warm-core ring. The superposition of 
plane waves reflecting off the lateral sides of the vortex 
sets up a radial mode that closely resembles a seamount- 
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trapped wave in its horizontal structure. Like the sea- 
mount-trapped wave, the most likely azimuthal mode for 
largescale forcing is n = -1, corresponding to clockwise 
azimuthal propagation around the vortex. The intrinsic, or 
Lagrangian, frequency then is co, = (0E-nVe/r~ Kj + £/2 
= 0.933/-0.25/= 0.683/ >/rf = /+ C, = 0.50/ Like the 
gravest seamount-trapped wave, this mode has maximum 
velocity amplitudes near vortex center and, at any given 
instant, forms a nearly unidirectional jet in the vortex core 
that rotates clockwise in time. Decay is rapid moving 
radially out of the vortex. 

Unlike the seamount-trapped topographic wave, a vor- 
tex-trapped wave is an internal wave and is therefore free 
to carry energy and momentum upward into the overlying 
water column. For a near-inertial wave of upward energy 
propagation, the horizontal velocity vector turns counter- 
clockwise with depth. The associated vertical wavelength 

K-d*-^ (2) 

N 

where Xris the radial wavelength (Appendix A, Kunze et 
al, 1995). Since the wave can propagate freely only in- 
side the vortex, its energy will accumulate in a vertical 
critical layer at the top of the core until instabilities trans- 
fer it to turbulence production and mixing (Kunze et al., 
1995). Thus, for a vortex-trapped wave, energy, shear, 
and turbulent dissipation maxima above the bottom are 
expected. For upward and clockwise azimuthal propaga- 
tion, the radial velocity u'r is 180°_ out of phase with the 
vertical displacement £,' = -VI Tz, for a net outward 
radial heat-flux <ur'T>. 

Including an eddy viscosity of 10 x HH m2 s-1, consis- 
tent with the microstructure measurements, does not sig- 
nificantly alter the dispersion relation between frequency, 
vertical wavenumber, and horizontal wavenumber (2), or 
the consistency relations between horizontal velocity 
components ur' and v9', and thus will not alter the turning 
with depth. The phase relation between a viscous wave's 
vertical displacement £' and the horizontal velocities is 
modified by at most 6° for the vertical wavelengths of in- 
terest (Appendix B). 

2.3 Summary of Commonalities and Differences 

In the context of Fieberling Seamount, seamount- and 
vortex-trapped waves share the following properties: 

• Both are forced by the barotropic diurnal tide, so their 
Eulerian frequencies co£ = co, + n V9 /r ~  CO, - £ / 2 = 

K„ OL 
• The horizontal velocity vectors of both rotate in time 

with the radial and azimuthal velocities 90° out of 
phase above the summit plain. 

• Both propagate clockwise azimuthally around the 
seamount (azimuthal mode n = -1). 

• Both decay radially away from the seamount. 
The differences are more subtle: 

• The vortex-trapped wave requires a vortex of suffi- 
cient strength to permit a diurnal Eulerian frequency. 
The seamount-trapped wave does not and will not 
exist if the frequency is effectively superinertial. 

• The vortex-trapped wave will carry energy and mo- 
mentum into the stratified water column and thus can 
have an energy maximum above the bottom (upward 
energy propagation implies counterclockwise turning 
of the horizontal velocity vector with depth). The 
seamount-trapped wave is a bottom-trapped topo- 
graphic wave so it should have its maximum signal at 
the bottom and little turning of the velocity vector 
with depth. (Bottom friction might induce a time-de- 
pendent benthic Ekman layer having counterclock- 
wise turning with depth.) 

• The radial velocity u'r and temperature T fluctua- 
tions for vortex-trapped waves propagating upward 
and clockwise around the vortex are in phase so pro- 
duce a net outward radial heat-flux <u'rT' >. (In the 
absence of dissipative processes, the divergences of 
this heat-flux and a nonzero vertical momentum-flux 
< v'ew' > drive a wave-induced mean circulation ür 

and w which exactly counterbalance the wave fluxes 
and there is no net change to the background mean 
fields; see Appendix A.) For inviscid seamount- 
trapped waves, the radial heat-flux is zero. These 
phase relations are only slightly modified by inclu- 
sion of eddy viscous effects (Appendices B and C). 

3. Measurements and Analysis 

3.1 Data 

Profiles were collected over the summit and flanks of 
Fieberling Guyot (32°26'N, 127°45'W) with the High- 
Resolution Profiler (HRP; Schmitt et al., 1988), Sippican 
expendable current profilers (XCPs; Sanford etal, 1982; 
Sanford et al., 1993), and Sippican T-5 (1600-m) expend- 
able bathythermographs (XBTs) in March 1991 as part of 
the ONR-sponsored Abrupt Topography Program to in- 
vestigate the impact of seamounts on physical and biolog- 
ical oceanography. At the seamount's latitude, the Cori- 
olis frequency is 7.8 x 10~5 s"1 (22.4 h), so both the K, 
(24.0 h, 0.933/) and Oi (25.9 h, 0.865/) diurnal tides are 
subinertial. Barotropic diurnal tides propagate northwest 
here (Schwiderski, 1981a, b). 

Fieberling Guyot rises from an abyssal plain of 4000- 
4500-m depth to a summit plain at 500-700-m depth 
(Fig. 1). A narrow pinnacle southwest of the geometric 
center of the summit plain attains 440-m depth. By defi- 
nition, a guyot has a flat top (apart from the pinnacle). 
Radial bottom slopes on the summit plain are -0.05 com- 
pared to flank slopes exceeding 0.2. The abrupt change in 
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Figure 1. Velocity profiler stations (XCP, +, X, o; HRP, A) and current-meter mooring sites (©) over the summit plain and 
flanks of Fieberling Guyot. Bathymetry is in meters. HRP measurements consist of day-long profile time-series at C and F3, 
spoke time-series to the west and southeast, and a survey around the rim. Radial XCP spokes were made from seamount center to 
the 2500-m isobath. Surveys to the south and east were collected on 7 March 1991 (+, x), to the north and west on 8 March 
(+), and on the summit plain on 18 March (o). 

slope near the 700-m isobath will be referred to as the 
summit rim and has an average radius of 5 km. The 
summit plain is elongated so that the rim radius is about 
6.5 km zonally and half that meridionally (Fig. 1). 
Beyond the rim, Fieberling Guyot can be described as a 
Gaussian of radial scale r = 12 km (Codiga, 1991). It is 
the northwesternmost of the Fieberling seamount chain. 
For the motions on the summit plain discussed here, 
Fieberling appears to be dynamically isolated from its 
nearest neighbor, Fieberling II, which lies 40 km to the 
southeast. This is consistent with the conclusion of Roden 
(1991) that only in the abyss did the seamount chain affect 
background impinging currents as a group. 

Other relevant measurements are two mesoscale CTD 
surveys conducted in August 1989 (Roden, 1991) and in 
April-May 1991 (Roden, 1994) and year-long current- 
meter mooring deployments from September 1990 to 

September 1991 at seven sites on Fieberling Guyot and 
the abyssal plain to the west (Wichman etal, 1993; Noble 
etal, 1994; Brink, 1995; Eriksen, 1995). The moorings 
were sited at the center of the summit plain (C in Fig. 1), 
to the northwest and southwest on the rim (R2 and R3), to 
the northwest and southwest in 1500-m water on the 
flanks (F2 and F3-5), and 40 km to the northwest and 
southwest on the abyssal plain. 

The HRP measurements include day-long time-series 
sampled every 3 h at the central (C) and southwest flank 
(F3) mooring sites, repeated radial sections to the 3000-m 
isobath over the western and southeastern flanks, and a 
survey around the rim (Fig. 1). Profiles 20-40 km from 
the peak on the neighboring abyssal plain are described by 
Toole et al. (1994). The stratified turbulent benthic 
boundary layer overlying the flanks is discussed by Toole 
et al. (1995). 
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The HRP is a freefall profiler (Schmitt et al, 1988). Its 
sensor suite includes a CTD and a two-axis acoustic cur- 
rent-meter which provide finescale vertical profiles of 
temperature, salinity, pressure, and horizontal velocity 
relative to an unknown but depth-independent constant. 
Also included are a high-speed thermistor, a dual-needle 
conductivity probe, and airfoil velocity shear probes to 
estimate microscale temperature and velocity dissipation 
rates. Schmitt et al. (1988) and Polzin (1992) detail the 
reduction of the microstructure data which follows the 
methodology developed by Neil Oakey at the Bedford 
Institute of Oceanography—half-meter segments of 
microstructure data are windowed, Fourier-transformed, 
and corrected for sensor and electronic interface re- 
sponses. Gradient variances are then estimated by in- 
tegrating the gradient spectra out to a spectral minimum 
(beyond which instrument noise dominates). Dissipation 
rate estimates assume three-dimensional isotropy. The 
production/dissipation balances of Osborn and Cox (1972) 
and Osborn (1980) are used to obtain diapycnal eddy 
diffusivity estimates, employing a mixing efficiency of 
0.25 (Oakey, 1982). 

For the seamount cruise, HRP was equipped with a 
Sea-Data Inc. acoustic altimeter to trigger release of the 
descent weight when the profiler got within 10 m of the 
bottom. The weight-release criterion was effective over 
the summit plain but less reliable over the steep flanks 
(presumably because of poor acoustic backscatter). HRP 
dives frequently terminated up to 100 m above the 
bottom, and one made contact with the bottom. 

Most of the XCPs were deployed along radial spokes 
from near the center of the summit plain to the 2500-m 
isobath on the flanks of the guyot (Fig. 1). XCP profiles 
in water depths less than 1600 m measured into the bot- 
tom. A survey of 43 profiles was conducted to the south 
and east between 0800 and 1300 hours on 7 March (+), 
with 19 of the stations being reoccupied between 1330 
and 1730 hours (X). A survey of 34 profiles was con- 
ducted to the north and west between 0500 and 
0900 hours on 8 March (+). Finally, a survey of 24 pro- 
files was conducted over the summit plain a week and a 
half later between 0500 and 0830 hours on 18 March (o). 
Most of the XCP data were collected within a few hours 
of the same phase of the diurnal tide. No expendable 
probes were dropped within 1 nmi of the moorings to 
prevent fouling of the current-meter rotors with expend- 
able wire. As a result, the southwest quadrant was 
undersampled. 

The expendable current profiler (XCP) measures the 
horizontal velocity to within an unknown but depth- 
independent constant using the voltage drop induced by 
seawater's motion through Earth's magnetic field and 
measures temperature with an XBT thermistor to 1600-m 

depth. Preanalysis processing averages the data in 3-m 
bins, with typical rms errors of ±0.4 cm s_1 and ±0.06°C 
for velocity and temperature, respectively. 

3.2 Analysis 
Two features predicted to occur atop a seamount are 

(i) a vortex cap, which should be axisymmetric and 
dominantly in the azimuthal velocity v8, and (ii) an 
azimuthal-mode-one seamount- or vortex-trapped wave 
forced by the barotropic diurnal tide, which should consist 
of a unidirectional, slightly subinertial jet over the summit 
which turns clockwise in time (see Fig. 15). 

The vortex and wave signals will be separated in the 
profile surveys by azimuthal averaging <•>„.  Averaging 
the east and north velocities filters out axisymmetric flow, 
isolating the expected diurnal wave signal. Averaging az- 
imuthal and radial velocities filters out all azimuthal 
modes except mode zero, isolating the axisymmetric vor- 
tex. We caution that numerical simulations do not always 
find the vortex to be axisymmetric (Haidvogel et al, 
1993). While it might be preferable to fit the data to az- 
imuthal modes as done by Codiga (1995), the present 
scheme captures the dominant signals above the summit 
plain and produces results indistinguishable from those of 
modal fitting.  The coordinate system is centered on the 
seamount centroid (32°26.2'N, 127°45.5W) as determined 
by Codiga (1991). The unknown barotropic offset is han- 
dled by arbitrarily removing the depth-average between 
150 and 300 m before azimuthal averaging.    This 
emphasizes perturbations at the summit depth and below. 
To compensate for the nonuniform azimuthal sampling 
(Fig. 1), the azimuthal averages are weighted by the 
sampling in the N, W, S, and E quadrants. This works for 
the velocity signals but may not handle the dipolar 
temperature (displacement) signal around the seamount 
adequately.   Toole et al. (1995) explore the effects of 
averaging relative to local bathymetry orientation. 

4. The Vortex Cap 

4.1 Spatial Structure 

Radial sections of azimuthally-averaged radial velocity 
< ur >e and azimuthal velocity <ve>6 are displayed in 
Fig. 2. The profiles have been WKB-stretched to 

/V0 = 5.2xlO"V z-» 

o 

j(N(z)/N0)dz 

to remove variations in the vertical scale and amplitude 
due solely to changes in the buoyancy frequency N. True 
depths are indicated along the right axes. 
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Figure 2. Radial profile sections of azimuthally-averaged (a) radial velocity <wr>9 and (b) azimuthal velocity <v9>9 with one 
standard error indicated by dark shading. Uneven azimuthal sampling (Fig. 1) is compensated for before averaging. The depth 
coordinate (left axis) has been WKB-stretched with respect to N0 = 5.2 x 10-3 s_1; true depths are shown along the right axis. 
Numbers along the bottom axis correspond to the number of drops going into each average, darker and lighter silhouettes to 
extremes in the WKB-normalized bathymetry, and open circles to current-meter sites. The radial velocity <ur>e (a) is everywhere 
less than 2 cm s_1. The azimuthal velocity <ve>e (b) exhibits anticyclonic flow of up to 10 cm s_1 over the summit rim at 
6-8 km radius between 600 and 900 sm (400- and 800-m depth). 
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Radial velocities (Fig. 2a) are everywhere less than 
2 cm s-1. The uniformly weak radial flows suggest that 
our azimuthal averaging scheme is not biased. At some 
depths, e.g., 580 sm (stretched meters), there is a sugges- 
tion of persistent in- or outflow. These instances are of 
such small vertical scale that we hesitate to equate them 
with the 1-2 cm s-1 radial outflow reported near the bot- 
tom by Eriksen (1991) and Brink (1995) because of possi- 
ble problems with azimuthal nonuniformity, because of 
the short duration of our sampling, and because the profile 
surveys were collected during a time of relatively weak 
radial flow as inferred from the R2 ADCP velocities (see 
Fig. 6). 

The average azimuthal velocity (Fig. 2b) displays 
a much more clearly defined signal. A 200-sm thick layer 
of anticyclonic flow resides atop the summit plain. 
Maximum speeds of 10 cm s~l are found at the 
rim (radius r = 1 km). The vortex is bounded above 
by a 100-m thick 3< v9 >e ldz = 1.5xlO"3 s"1 =0.3W 
vertical shear layer and below by a 200-m thick 
10~3 s_1 = 0.25 N shear layer. Corresponding relative 
vorticities £ = 3<ve>e/ dr + <v9>e/r (Fig. 3) are noisier 
because they involve derivatives. The vorticity has values 
of-0.50/+ 0.15/over the summit plain and vanishes over 
the seamount flanks so, in the vortex core, the effective 
Coriolis frequency/e#  = 0.5/= 2;t/(44.8 h) < K„ O^ 

Freeland (1994) observed a 40-m thick vortex cap of 
similar strength in ADCP surveys atop Cobb Seamount 
that was steady on 6-7 day timescales. However, during 
a different cruise, Codiga (1995) found vorticities weaker 
than -0.1/ atop Cobb. There is a hint that the vorticity 
vanishes inside a 2-km radius (Fig. 3), but vortex center 
position uncertainties are large enough that this cannot be 
stated conclusively. The absence of a positive vorticity 
annulus outside the azimuthal velocity maximum 
indicates that the azimuthal velocity <ve>8 falls off as r_1 

for radii r > 1 km. 

4.2 Comparison with Current-Meter Observations 

Figures 4 and 5 compare the XCP vorticities and 
azimuthal velocities with 2-day averages of the current- 
meter records (Wichman et al., 1993) about the time 
of the 7-8 March XCP surveys. The current-meter rel- 
ative vorticity is inferred assuming solid-body rotation, 
C, = 2VQ I r. The current-meter data verify anticyclonic 
swirling between 400- and 600-m depth (Fig. 4), albeit 
slightly stronger. The current-meters and profilers also 
both reveal nearly solid-body rotation inside 7-km radius 
(Fig. 5). Azimuthal currents fall off more slowly in the 
current-meter data than in the profile data at larger radii. 
Mean flows shallower than 400 m are weak and show no 
reluctance to cross isobaths. 

r (km) 

z(m) 

R3 R2 F3 F2 

Figure 3. Radial profile sections of azimuthally-averaged relative vorticity <£>e = 3<ve>e/9r + <v9>9/r with one standard 
error indicated by dark shading. Relative vorticities of —0.50/± 0.15/are found in a 200-m thick layer over the summit plain. 
Vorticities vanish at radii r > 8 km, indicating that <v9>e ar"1. Weak vorticities inside 2-km radius may reflect measurement 
uncertainty in the position of the vortex center. 
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Figure 4. Comparison of the vertical structure of the relative 
vorticity at r = 6.7 km from the XCP surveys (solid curve) with 
4-day smoothed current-meter vorticities ^ ~ 2<ve>,/r (-*-) from 
inside 7-km radius at the time of the XCP surveys assuming 
solid-body rotation. XCP vorticities are -0.35/ to -0.40/ be- 
tween 500- and 650-m depth, vanishing abruptly shallower than 
400 m and more gradually deeper than 900 m. Current-meter 
vorticities are slightly stronger at -0.5/to -0.6/ 

Differences between profiler and current-meter veloci- 
ties likely arise because the two measurements do not 
sample the same part of the flow. If the vortex is not per- 
fectly circular, is off center, or is otherwise not axisym- 
metric as found in numerical simulations (Haidvogel et 
al., 1993), differences in the profiler and current-meter es- 
timates would result. 

4.3 Temporal Behavior 

Fortnightly modulation of the vortex strength is appar- 
ent in 2-day smoothed azimuthal velocities from the rim 
moorings (e.g., at R2, Fig. 6). This implies that the vortex 
cap, with its dome of cold water over the seamount peak, 
is at least partially sustained against benthic Ekman 
pumping and turbulent decay by rectification of the K[ 
and 0[ tidal fluctuations. In particular, Eriksen (1991) 
and Brink (1995) argue that diurnal-wave radial heat- 
fluxes balance downward Ekman pumping over the 
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Figure 5. Comparison of the radial dependence of 4-day 
smoothed current-meter and azimuthally-averaged XCP az- 
imuthal velocities, <ve>, (|) and <ve>e (♦), in the depth range 
440-570 m. The dotted line is a cubic least-squares fit setting 
<vg> = 0 at r = 0 and r = 11 km. The current-meters indicate ex- 
treme azimuthal velocities of -14 cm s"1 at r - 
6-7.5 km with near solid-body rotation at smaller radii. XCPs 

indicate a similar structure but slightly weaker velocities of 
—10 cm s"1. 

summit plain. Freeland (1994) suggested that the vortex 
observed atop Cobb Seamount was forced by wave rec- 
tification also. This raises the question of whether the 
vortex cap on Fieberling's summit is a Taylor cap or 
maintained entirely by rectified tidal flux-divergences, 
and raises doubts about past oceanographic interpretations 
of isopycnal doming over seamounts in terms of Taylor 
cap dynamics. Wave rectification induced by intense 
dissipative processes appears to be at least as important a 
driving mechanism here but is poorly understood. 

The R2 current-meter time-series show that the vortex 
abruptly turns on and off every few months (Fig. 6). The 
same behavior is seen at R3. Brink (1995) argues that this 
is a function of the impinging zonal flow direction. His 
Fig. 13 shows a tendency for a vortex cap to be present 
during eastward flow in the far field and suppressed 
during westward flow. This is contrary to ß-plane dynam- 
ics predictions. McCartney (1975) and Verron and 
LeProvost (1985) find that westward flow produces 
trapped vortices while eastward flow generates a Rossby 
wave wake in barotropic ß-plane simulations of flow past 
a small-amplitude seamount. The HRP and XCP mea- 
surements were taken at a time of transition from weak 
eastward to weak westward impinging flow (« ~ 
±1 cm s_1). Since the vortex flow exceeds the impinging 
flow, the fluid it contains is isolated. 

4.4 Potential Vorticity Anomaly 

Even though the HRP profiles reveal a 200-m thick 
positive density anomaly (<5ae> = 0.02 m, Fig. 7a) asso- 
ciated with the vortex cap atop the summit plain (site C, 
r ~ 1 km) compared to the flank (F3, r = 7.5 km), corre- 
sponding to an upward vertical displacement of 4 m, it is 
too weak to produce a discernible buoyancy frequency 
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Figure 6. Time-series of 4-day smoothed azimuthal velocity <vg>, (solid) and radial velocity <u^>t (dotted) from the upward- 
looking ADCP at R2 on the summit plain's rim (Fig. 1) in the depth range 500-570 m (700-750 sm). The azimuthal velocity 
is also expressed as a relative vorticity (right axis) assuming solid-body rotation, £ = 2<vfl>r/r. XCP survey periods are indi- 
cated by dotted vertical lines. The radial velocity tends to be less than ±5 cm s~! while the azimuthal velocity is consistently 
negative. Fortnightly fluctuations in <ve>, are of insufficient strength to shut off or reverse its direction. Every 2-3 months, 
the azimuthal velocity abruptly shifts between -15-20 cm s-' and ~5 cm s~' accompanied by less dramatic changes in the radial 
velocity. 

anomaly. As a result, the relative vorticity of the vortex 
cap induces a negative potential vorticity anomaly of 
-0.25 fN (Fig. 7b) only slightly diminished by the weak 

positive buoyancy frequency anomaly. The presence of a 
potential vorticity anomaly is not consistent with pure 
Taylor cap dynamics, which preserves potential vorticity. 
Irreversible dissipative processes, such as those associated 
with wave rectification, must play a role in creating a 
potential vorticity anomaly (Ertel, 1942; Haynes and 
Mclntyre, 1987). Viscous damping and bottom friction 
by themselves would produce a positive anomaly and thus 
cannot be responsible for the observed anomaly. If fea- 
tures like this potential vorticity anomaly are occasionally 
shed off seamounts, they might explain the submesoscale 
potential vorticity anomalies found beside Ampere 
Seamount by Kunze and Sanford (1993). 

4.5 Cyclogeostrophic Balance 

The subinertial azimuthally-averaged radial momentum 
equation can be expressed 

r or 
3 < u2 > < u2 > - < Vfl2 > 

+ -z +  - s  
or r 

3 < u'w' > 
(3) 

where the reduced, or kinematic, pressure P = P/p0 and P 
is the dynamic pressure. The boxed terms are the cyclo- 
geostrophic (gradient-wind) balance expected for steady 
inviscid flow with curvature in the absence of strong forc- 
ing, e.g., rings and Meddies. We will refer to the lefthand 
side of (3) as the effective Coriolis acceleration. Figure 8 
compares the right- and lefthand sides of a radially-inte- 
grated cyclogeostrophic balance 
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Figure 7. (a) Average HRP density anomaly <8oe> (dashed), buoyancy frequency anomaly <8iV> (solid), and vertical 
displacement < \ > (dotted) profiles at site C (r - 1 km) on the summit plain compared to site F3 (r = 7.5 km) on the flanks. The 
200-m thick <5a9> = 0.02 density anomaly above the summit plain is too weak to produce a significant buoyancy frequency 
anomaly. (b) Average profiles of relative vorticity t/f (dotted) and potential vorticity anomaly [(f + Qj^C2 ~ fl^F^1 fl^F^ 
atop the summit plain (r < 7 km).  The vortex cap has a negative potential vorticity anomaly of -0.25 fNFj 

r 

200 m 

3fJ 
200 m 

(4) 

dg9    f 
dT    J 

ST-dz, 

making use of the hydrostatic balance, dP/dz = B, and the 
local T, oe-relation, dae/dT, in the XCP data to infer 
pressure anomalies 8P from the temperature anomalies 87 
relative to the outermost radial bin at r ~ 10 km. The ver- 
tical integral is taken from the center of our 150-300 m 
level of no motion. The effective Coriolis acceleration is 
evident in the negative anomaly between 400- and 600-m 
depth (dotted curve in Fig. 8). For radii r < 4 km, the 
pressure anomaly 5P in this depth range (solid curve) is of 

the same sign and comparable magnitude, so the vortex 
cap is in cyclogeostrophic balance. At larger radii, the 
magnitudes of the two sides of (4) remain comparable but 
the vertical structure differs. The discrepancy becomes 
even greater below 600-m depth, where a growing nega- 
tive pressure anomaly has no balancing signal from the 
effective Coriolis acceleration. This discrepancy is seen 
independently in both the XCP and HRP data. The hori- 
zontal momentum-flux divergences on the righthand side 
of (3) cannot account for it, making at most a 10% contri- 
bution. The vertical momentum-flux divergence contribu- 
tion might be estimated from < u'r

2 > and the bottom 

slope 

•o 

J B < u'rw' > 

dz 
dr 

•o 

J d(a < u'r >) 

dz 
dr. 
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balance (3).   The quantities are comparable immediately above the summit plain for radii r < 4 km; a dome of cold water exists 
over the summit plain.  But the vertically-integrated buoyancy anomaly has a different vertical structure for r > 4 km. 

Assuming that a = a0exp[(z - zbV(zb- za)], where a0 is the 
bottom slope on the flanks, zb the bottom depth, and z0 the 
depth of the summit plain, so that a decays toward zero 
when moving off the bottom on a depth scale comparable 
to that from the bottom to the summit plain, the vertical 
momentum-flux divergence is unable to explain the ob- 
served discrepancy at r > 4 km. Reasonable alternative 
relations for a yield similar results. 

The sole remaining plausible explanation for the dis- 
crepancy is that the azimuthal sampling is inadequate to 
filter out the dipolar horizontal temperature structure of 
the diurnal wave, «9 - <ot. At depths below the summit 
rim over the flanks, there is usually one azimuthal bin 
with no data points in it. We conclude that the unbal- 
anced pressure anomaly 8P at radii r > 4 km and depths 
z > 500 m is due to sampling bias. 

4.6 Radial Heat Fluxes and Wave Rectification 

Brink (1995) also reported a dome of cold water over 
the summit associated with anticyclonic flow. He argued 
that an outward radial heat-flux <ur'T"> = 0.4°C cm/s was 
maintaining the vortex cap against benthic Ekman down- 

welling wfz (vv=-0.03 to -0.13 cm s~! and fz = 

(0.7-1.5) x 10"2 °C nr1) inferred from the near-bottom 
radial outflow found by Eriksen (1991) and himself. His 
Ekman term was an order of magnitude larger than his 
radial heat-flux divergence, which is an order of magni- 
tude larger still than our estimate (Figs. 17 and 18). A 
possible reason for this discrepancy is that Brink's param- 

eterization overestimated the bottom stress. A factor of 
ten smaller value arises using an eddy viscosity of 10 x 
10"4 m2 s"1 as inferred from the turbulent measurements. 
Over a sloping bottom, MacCready and Rhines (1993) 
have shown that downslope Ekman transport will set up 
horizontal pressure gradients which suppress the bottom 
flow geostrophically, isolating the mean flow and elimi- 
nating the bottom stress. In this case, the vortex would 
become semidetached. There are indications that the az- 
imuthal velocity <ve>6 and relative vorticity <^>e weaken 

toward the bottom near the summit rim (Figs. 2 and 3). 
Variable bathymetry is another means by which the bot- 
tom stress might be overestimated if the vortex is in con- 
tact with the bottom over only a small fraction of its 
azimuth. But the above arguments do not explain the per- 
sistent outward radial velocities observed near the bottom 
(Eriksen, 1991; Brink, 1995; Freeland, 1994). 

Here, we wish to point out some subtleties in the wave 
rectification problem that hinder inferring balances with 
incomplete data. Consider steady (3/3f = 0), azimuthally- 
averaged (3/30 = 0) conservation of azimuthal momentum 
and buoyancy in a tall (or equivalently a vertically- 
integrated) vortex (3/3z ~ 0) 

<f+QHr = - 
3 < V'QW' > 

dz 

ld[r<u'rb'>] 
Nlw = —  

(5) 

(6) 
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1 3(nL)    dw 
—-—— + V" 
r    dr        oz 

= 0. (7) 

where C, = Ve/r + dVe/dr is the background mean vortic- 
ity, b\ u,.', v9', and w' are the wave buoyancy, radial, az- 
imuthal, and vertical velocities, and «rand vv are wave- 
induced mean flows forming a cross-stream circulation. 
The < u'rv'd > horizontal momentum-flux vanishes (see 
Fig. 17), and Brink (1995) showed that ürdB Idr is neg- 
ligible. The vertical buoyancy-flux <w'b'> due to turbu- 
lent mixing, KpN

2 5 2 x 10_8m2 s~3, could contribute as 
much as the Ekman downwelling only if confined to ver- 
tical scales of 3-10 m, so it will be ignored here. 
Substituting (5) and (6) into continuity (7), we find that 

< v'6w' > _    < u'rb' > 

/+c Nz (8) 

recognizing that the constants of integration are zero for a 
wave field. As shown in Appendix A, this relation holds 
exactly for inviscid vortex-trapped waves. Thus, in (5) 
and (6), wave fluxes can exactly balance wave-induced 
mean advective fluxes to maintain a steadystate indepen- 
dent of the Ekman flow; the background field remains 
unchanged by the waves' radial heat-flux and vertical 
momentum-flux unless dissipative processes act to alter 
their interrelationship. This is a general result for waves 
propagating in a background mean shear known as the 
nonacceleration theorem (Andrews and Mclntyre, 1976; 
Dunkerton, 1980). If the radial heat-flux arises from a 
vortex-trapped wave as interpreted here, its role in 
maintaining the background vortex cannot be evaluated 
without measurements of the vertical momentum-flux 
<ve'w^>. How forced/damped waves affect the mean 
depends sensitively on the strength and nature of the 
dissipative processes. For example, in cases where such 
damping can be parameterized as eddy diffusivities and 
viscosities, the background diffuses in the vertical or 
horizontal depending on the eddy Prandtl number (see, 
e.g., Flierl and Mied, 1985). Our main point here is that, 
without knowing the detailed nature of the dissipative pro- 
cesses or measuring all the flux-divergences, de- 
termination of the rate of change of background quantities 
is subject to misinterpretation. In the present case, the 
data do not allow reliable estimation of the vertical 
momentum-flux <ve V>. 

5. The Diurnal Shear Layer 

5.1 Temporal Behavior 

Current-meter time-series (Genin et at, 1989; Eriksen, 
1991; Noble et al, 1994; Brink, 1995) have established 
that there is a ±15 cm s_1 diurnal oscillation atop the 
summit plain of Fieberling Guyot with large contributions 
from both K^ (0.933/) and Ox (0.865/) tidal frequencies. 

Both are 100 times as energetic as the barotropic tides in 
the far field, with K, being about four times larger than 
O,. Beating of these two tidal constituents produces a 
subharmonic fortnightly cycle and a harmonic at M2 

(8Y = 0.28°C). The diurnal frequency is confirmed by 
the HRP profile time-series at C though the tidal con- 
stituents cannot be separated. Grayscale HRP time-series 
at site C (Fig. 9) reveal clockwise rotation of the velocity 
vector with time and counterclockwise rotation with depth 
(downward phase propagation) below 300-m depth. 
Dropped lag coherences for vertical wavelengths 
Xz = 32-128 sm imply a period of 23.6 h (0.95/), 
consistent with the current-meter measurements. Similar 
vertical and temporal phase behavior is observed in the 
300- to 600-m depth range of the flank profile time-series, 
well-isolated from the bottom. 
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Figure 9. Grayscale plots of east and north velocity from a 27-h 
long HRP profile time-series at site C on the summit plain. HRP 
profiles were collected every 3 h. The depth average has been 
set equal to zero. Larger amplitudes and downward phase prop- 
agation are evident below 300-m depth. 

Vertical isopycnal excursions of +20 m are observed in 
the center and flank HRP time-series with similar vertical 
and temporal scales as found in velocity. Their downward 
phase propagation over the flank leads us to conclude that 
the steplike structures in the temperature and salinity pro- 
files are produced by the diurnal strain field and not tur- 
bulent mixing. At site C on the summit plain, the vertical 
displacement field is dominated by semidiurnal harmon- 
ics. 

5.2 Spatial Structure 
Azimuthally averaging the east and north velocities in 

the XCP snapshots filters out axisymmetric flow associ- 
ated with the vortex and isolates azimuthal-mode-one 
structure   associated   with   the   diurnal   oscillations. 
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Diurnally backrotating the profiles to a common time be- 
fore averaging did not capture significantly more variance 
because the XCP profiles were all collected within a few 
hours of the same phase of the diurnal tidal forcing. 

Radial profile sections of azimuthally-averaged, WKB- 
normalized east and north velocity, <w>e and <v>e, are 
displayed in Fig. 10. WKB-stretching produces higher 
vertical resolution where N is small, accounting for the 
smaller vertical scales at depth than in shallow water. A 
150-sm thick layer of intensified shear is evident imme- 
diately above the summit plain (550-700 sm, 350-500 m). 
The signal decays on 3-4 km radial scales away from the 
summit but is still visible at 10-km radius. 

The efficacy of the averaging scheme in isolating the 
bulk of the variance above the summit plain is demon- 
strated in Fig. 11. Between 550- and 650-sm depth, the 
variance in the average (a) greatly exceeds that in the 
residual (b). At other depths, the residual contains more 
variance than the average, indicating that azimuthal- 
mode-one structure dominates only immediately above 
the summit plain. Maximum velocities exceeding 15 cm 
s"1 lie between 600 and 650 sm (400 and 450 m), ~ 50 m 
above the bottom. Velocity maxima 50 m above the bot- 
tom at ~ 450-m depth are also seen at the rim in the 
ADCP data (Brink, 1995). This is not consistent with the 
evanescence away from the bottom expected for 
seamount-trapped waves. 

The relatively low variance in both the average and 
residual between 150- and 500-sm depth is a consequence 
of assuming a level of no motion in that depth range. This 
may also result in excess variance below the summit 
depth, particularly in the residual (Fig. 1 lb), so this signal 
cannot unambiguously be interpreted as due to critical re- 
flection from the flank slopes. Conservatively, the differ- 
ence between the WKB-normalized residual kinetic ener- 
gies at 300-550 sm and 700-1200 sm can be thought of as 
a measure of the uncertainty in the barotropic velocity. 

The diurnal shear layer (Fig. 10) is present in both east 
and north velocities but is out of phase in the vertical in 
the sense that the velocity vector turns counterclockwise 
with depth. This can be seen most clearly in Fig. 12, 
which displays a radial slice of the orientation of the hori- 
zontal velocity vector, 9 = Arctan(<v>6 /<u>e), in the 
depth range where the signal is most energetic; the orien- 
tation 9 is a measure of the phase for near-inertial internal 
gravity waves. It increases monotonically with depth by 
240° in 150 sm. This uniform phase gradient 30/9z (= k.) 
is consistent with the upward-looking ADCP measure- 
ments in the bottom 50 m at R2 (Fig. 1). Brink (1995) re- 
ports that the ADCP-measured phase gradient above 
550 m (750 sm) is four times greater than in his (1989) 
seamount-trapped wave model including a time-dependent 
benthic Ekman layer. The XCP profiles show that this 
gradient also extends over a depth range four times larger 
than predicted by his model (Fig. 13). The gradient corre- 

sponds to a vertical wavelength Xz ~ 250 sm. If inter- 
preted as a near-inertial internal wave, the counterclock- 
wise turning with depth implies downward phase and up- 
ward energy propagation. The orientation also increases 
by 30° in 5-7 km radius (Fig. 12). For an internal wave, 
energy propagates along lines of constant phase in the ver- 
tical plane, so this implies outward as well as upward 
energy propagation. 

Vertical wavenumber spectra (Fig. 14) reiterate the ro- 
tary character of the signal with depth. The shear layer 
over the summit plain appears as a peak at vertical wave- 
length X,= 256 sm in the counterclockwise-with-depth 
(CCW) spectrum over the summit. The peak is most pro- 
nounced in the variance-preserving spectrum. There is no 
corresponding enhancement in the clockwise-with-depth 
(CW) spectrum at this wavelength. The CW spectrum is 
redder (k.-512) than the GM model (Garrett and Munk, 
1975; Cairns and Williams, 1976) but has comparable 
levels at lower wavenumbers (Xz> 50 sm). At radii 
greater than 10 km, there are no significant peaks in either 
the CCW or CW spectra. Both have the same spectral 
slope but slightly lower (0.7) levels than the GM model. 
Spectral slopes are steeper (&r3) for vertical wavelengths 
X.< 50 sm. Clockwise rotation dominates above 500-sm 
depth (300 m) as is typical of the ocean pycnocline 
(Leaman and Sanford, 1975). 

Figure 15 compares the horizontal structure of the am- 
plitude and phase of the X, = 256 sm CCW component 
with that of the gravest-mode seamount- and vortex- 
trapped waves. The observed structure resembles the 
gravest mode in that the largest amplitudes are found 
above the summit plain and it exhibits nearly uniform ori- 
entation. Moving off the summit plain, the observed vec- 
tors become weaker and of more random orientation. 
Comparing just the radial decay of amplitude, Fig. 16 
displays an envelope of solutions for the vortex-trapped 
near-inertial wave model constrained by the observed 
buoyancy frequency N, vortex radius r0, vorticity £, and 
vertical wavelength X. (gray stippling). Further con- 
straining the Eulerian frequency to be equal to the K, 
diurnal frequency produces the black envelope of so- 
lutions. The seamount-trapped wave model behavior (A) 
better matches the vortex-trapped model behavior than the 
XCP data (•), but all three show the largest amplitude 
inside the vortex and decay on scales of a few kilometers 
outside the vortex. Since the gravest-mode horizontal 
structure for the two wave models is nearly identical, it 
cannot be used to identify the dynamics of the diurnal 
shear layer. 

5.3 Radial Heat-Flux 
A striking feature in the summit plain current-meter 

records is the radial heat-flux <urT> associated with the 
diurnal oscillations (Brink, 1995).  Johnson and Sanford 
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Figure 10. Radial sections of azimuthally-averaged, WKB-normalized east velocity <U>Q (a) and north velocity <v>e (b) over 
the summit plain and flanks. Shading about the profiles indicates one standard error. WKB-stretched depths are indicated along 
the left axis and true depths along the right axis. Light and dark silhouettes indicate extremes of bathymetry, open circles the 
locations of current-meters (Wichman et al., 1993), and numbers at the bottom the number of drops going into each average. A 
150-sm thick layer of 10-15 cm s_1 shear lies 50-100 sm above the summit plain and rim, evanescing radially away from the 
seamount. Extrema in <U>Q and <v>g are not at the same depths but offset in the sense that the velocity vector turns counter- 
clockwise with depth (see Figs. 12 and 13). There is also a horizontally-coherent wave of Xz= 50 sm in <v>gbut not <u>$ 
between 200- and 400-sm depth. 
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Figure 11. Radial sections of WKB-normalized (a) average Cartesian kinetic energy <KEuv>e = (<w>e2 + <v>e
2)/2 and (b) the 

residual energy KE uv= <u'2 + V'
2
>Q/2. The average kinetic energy (a) has a peak exceeding 100 cm2 s"2 between 600 and 

700 sm (400-500 m depth), 50-100 sm above the summit plain. This peak corresponds to the 150-m thick shear layer in 
Fig. 10. The residual kinetic energy (b) has more uniform overall energies with no well-pronounced peak above the summit, 
demonstrating the efficacy of the averaging scheme in isolating the feature over the summit plain. The larger residual energy 
below 500-sm depth is due to removal of 150-500 sm velocities from the profiles before averaging. 



30 KUNZE AND TOOLE 

-2 

600 

J N0 

700 

800 

r(km) 

O 

O 

1300' 

300 

400 

z(m) 

500 

600 

Figure 12. Radial section of the orientation of the azimuthally-averaged Cartesian horizontal velocity, 9 = 
Arctan(<v>e/<M>e), in the shear layer (Fig. 10). The orientation 9 is only contoured where the horizontal kinetic energy ex- 
ceeds 15 cm2 s"2. The increase of the orientation 9 by 240° from 580- to 720-sm depth reveals that the velocity vector turns 
counterclockwise with depth. The corresponding vertical wavelength is -210 sm. The sense of the turning is consistent with 
(i) near-inertial waves of upward energy propagation or (ii) subinertial time-dependent bottom Ekman spirals. The orientation 9 
also increases by 25-30° in 6-km radius, consistent with a radial wavelength of -80 km. In a vertical plane, internal-wave 
energy propagates along lines of constant phase, so this interpretation would imply upward and outward energy propagation. 

(1980) reported similar correlations between vertical dis- 
placements and outward velocities on the flanks of 
Bermuda; they interpreted their result as evidence of an 
anisotropic internal wave field. Radial velocity/vertical 
displacement correlations are also seen on the Fieberling 
summit plain in the profiler data. Vertical wavenumber 
coherences <ur've'>, <ur%'> and <v9^'> are significant in 
vertical wavelengths X,= 100-300 sm for r = 6-10 km 
(Fig. 17). On these scales, ur' and v9' are 90° out of phase, 
consistent with the counterclockwise turning with depth 
of the horizontal velocity vector (Fig. 12); radial velocity 
ur' and vertical displacement cj' = - VI 7"zare 180° out of 
phase, implying an outward radial heat-flux, and azimuthal 
velocity v9' and vertical displacement %' are 90° out of 
phase. These properties are more consistent with a 
vortex-trapped near-inertial internal wave than with a 
seamount-trapped topographic wave. Adding viscous 
damping Vek.2 with ve= 10 x 10-4 m2 s-1, consistent 
with the observed turbulence levels, causes the theoretical 
phase relations to diverge from their inviscid values, but 
not by enough to explain the data (see Appendices B and 
C). 

The radial structure of the radial displacement-flux 
<ur%'> (solid line) resembles that of a vortex-trapped 
wave, having a zero crossing near 3-km radius with posi- 
tive values inside that radius and negative values outside 
(Fig. 18). We caution, however, that Haidvogel et al. 
(1993) found a radial heat-flux in numerical simulations 
where the forcing frequency and Coriolis frequency/were 
too far apart for a vortex-trapped wave to exist. 

6.   Turbulence and Mixing 
The kinetic energy dissipation rate e and temperature- 

variance turbulent dissipation rate %T exceed e = 10~6 

W kg"1 and %T= 10"7 °C2 s"1, respectively, in the 200-m 
thick diurnal shear layer above Fieberling's summit plain. 
Dissipations of comparable magnitude are found in shal- 
lower, more stratified water in association with the upper- 
ocean internal wave field and surface mixed-layer during 
periods of strong wind-stress. But above 300-m depth, the 
dissipation rates exhibit no spatial pattern. Below 300 m, 
the average kinetic energy turbulent dissipation is 100 
times larger in the diurnal shear layer over the summit 
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Figure 13. Comparison of the velocity orientation A9 as a 
function of WKB-stretched depth from Brink's (1990) seamount- 
trapped wave model (dashed), the rim R2 ADCP mooring 
(solid), and XCPs near the center and on the rim of the summit 
plain (dotted). XCP and ADCP gradients are roughly consistent 
in the overlapping depth range 680-780 sm. The model's time- 
dependent bottom Ekman spiral is also roughly consistent with 
the turning in this depth range. However, the XCP profiles indi- 
cate that the phase gradient 0zextends to 580-sm depth while the 
seamount-trapped wave model indicates uniform phases above 
700 sm until 620-sm depth, then a 180° phase shift (velocity re- 
versal) at shallower depths. 

plain than at similar depths 10 km away (Fig. 19). 
Patches of high energy turbulent dissipation are well- 
correlated with the sites of Froude number (not shown). 
Error bars are 97% confidence limits computed using the 
bootstrap technique (Efron and Gong, 1983) and do not 
differ significantly from those computed assuming a log- 
normal distribution (Baker and Gibson, 1987). 

The average kinetic energy dissipation rate e above the 
summit plain is (3.3 ± 0.1) X 10"8 W kg"1, sufficient to 
drain the total energy in the diurnal oscillation (-5.0 x 
10~3 m2 s"2) and vortex cap (-2.5 x 10"3 m2 s~2) in 3 days. 
For comparison, the amount of time it would take open- 
ocean turbulence to deplete a Garrett-and-Munk internal 
wave field is 100 days. The short depletion time over 
Fieberling Seamount implies that barotropic diurnal tides 
are continuously supplying energy to these motions on a 
similar timescale to maintain the observed signals. The 
issue of intensified near-bottom turbulence contributing 
little mixing because it acts in an unstratified benthic 
boundary layer (Garrett, 1990) is not germane above ei- 
ther the summit plain or the flanks (Toole et al, 1995) 
where strong turbulence is found in the stratified waters. 

The diapycnal eddy diffusivities inferred from the mi- 

crostructure data (KT= ^(IT2), Osborn and Cox, 1972; 

Kp < 0.25S/N2 , Osborn, 1980) have a typical open-ocean 
value of 0.1 x 10"4 m2 s'1 above 300-m depth (Fig. 20). 
In the 200-m thick layer atop the summit plain, they ap- 
proach 50 x 10"4 m2 s-1 (excluding diffusivities within 
10 m of the bottom that could be in a bottom boundary 
layer).   The steady Ekman scale height for an effective 
eddy viscosity of 50 x 10"4 m2 s"1 is 8 m. Similar eddy 
diffusivities (100 x  10"4 m2 s^1) were found by Mudge 
(1994) at Cobb Seamount. In his case, the largest values 
were near the rim depth and extended outward several 
seamount radii. Nabatov and Ozmidov (1988) found nu- 
merous 10-m thick patches above and in detached layers 
in the vicinity of Josephine and Ampere seamounts with 
turbulent dissipation rates of (6.0-^100.0) x 10"7 W kg"1. 
Osborn (1978) reported average dissipation rates of 
10"8 W kg-1 within 5-80 km of an island, corresponding 
to eddy diffusivities of 10"4 m2 s"1, but these measure- 
ments were not proximal to the topography and the turbu- 
lence may have been due to a recent storm passage. Toole 
et al. (1995) and Eriksen (1995) find eddy diffusivities of 
(2.0-6.0) x  10"4 m2 s"1 in the stratified boundary layer 
above the flanks of Fieberling. 

Averaged over the ocean basin, these diffusivities are at 
most equivalent to the 0.1 x 10~4 m2 s"1 observed in the 
main pycnocline (Mourn and Osborn, 1986; Gregg, 1989; 
Ledwell et al, 1993; Toole et al, 1994; Polzin et al, 
1995), so seamount mixing cannot raise basin-average 
mixing levels to a vertical advection-diffusion balance 
(Munk, 1966) value of 10"4 m2 s"1. 

7. Summary and Discussion 
Fine- and microstructure profiles collected over 

Fieberling Seamount reveal a 200-m thick layer of intense 
activity overlying the summit plain. In this layer there co- 
exists (i) an anticyclonic vortex cap of relative vorticity 
-0.5/ (Fig. 2b), (ii) a slightly subinertial diurnal shear 
layer (Figs. 9 and 10), and (iii) intensified turbulence with 
average dissipation rates e = 3.3 x 10"8 W kg"1 (Fig. 19) 
and eddy diffusivities KP = 10 x 10"4 m2 s"1 (Fig. 20). 
All these motions appear to be ultimately driven by the 
barotropic K, and O, diurnal tides. The turbulence levels 
imply decay times of ~3 days, so it is clear that the baro- 
tropic tides are continually pumping energy into the 
summit motions. 

The vortex was in cyclogeostrophic balance, at least in- 
side r - 4 km (Fig. 8). At larger radii and depths greater 
than 600 m, the radial pressure gradient and effective 
Coriolis acceleration do not balance. This imbalance 
could not be explained by a contribution from momen- 
tum-flux divergences. It appears to be the result of inade- 
quate azimuthal sampling. The strength of the vortex ex- 
hibited a fortnightly cycle with peak-to-peak variations of 
-0.4/ to -0.5/(Fig. 6), evidence that it was at least par- 
tially driven by the diurnal tides. Other evidence that the 
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Figure 14. Rotary vertical wavenumber spectra of kinetic energy for drops at 0-3 km (upper two panels) and 9-12 km radius 
(lower two panels). Spectra are presented in both log-log (left panels) and variance-preserving (right panels) formats. The 
0-3 km spectra emphasize the depth-rotary nature of the shear-layer signal above the summit plain. They are dominated by a 
counterclockwise-with-depth (CCW) peak at Xz = 256 sm. There is no corresponding enhancement of CW energy. Away from 
the seamount, clockwise and counterclockwise spectra are similar and slightly below GM model levels. 
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Figure 15. Horizontal structure for lowest-mode seamount- or vortex-trapped wave (left panel; after Brink, 1989), and the am- 
plitude and phase of the observed Xz = 256 m counterclockwise-with-depth signal (right panel). The seamount- and vortex- 
trapped wave have identical horizontal structure. The observations have been averaged in 2' x 2' bins. Over the summit plain, 
the signal is strongest and has nearly uniform orientation.  Off the summit, amplitudes are weaker and orientation more random. 

vortex cap could not be explained with inviscid Taylor 
cap dynamics is that its core contained a negative poten- 
tial vorticity anomaly (Fig. 7) while Taylor cap dynamics 
conserve potential vorticity. Wave rectification of the di- 
urnal tides is the most likely mechanism for maintaining 
the cold dome of the vortex against benthic Ekman decay. 
An outward radial heat-flux <ur'T> is associated with the 
diurnal shear layer but, without measurements of the ver- 

tical momentum-flux <v6 w'>, the role that the diurnal os- 
cillation plays in driving the vortex cannot be evaluated 
rigorously. The vortex strength also changed dramatically 
every few months for reasons that were unclear but may 
be related to changes in the direction of the impinging 
background flow (Brink, 1995). 

The diurnal shear layer also displays a fortnightly mod- 
ulation of the K; beating against the O, tide. Its jet-like 
azimuthal-mode-one horizontal structure rotates clock- 
wise with time and counterclockwise with depth 
(kz= 250 sm). Its slightly subinertial frequency (Fig. 9) 
and horizontal structure (Figs. 15 and 16) closely resem- 
ble those of a seamount-trapped topographic wave (Brink, 
1989, 1990). However, a vortex-trapped near-inertial in- 
ternal wave has similar properties (Kunze et al, 1995). 
Moreover, the maximum variance being 50 m above the 
bottom, the continuous counterclockwise turning of the 
velocity vector with depth (Figs. 12 and 13), and the ra- 
dial heat-flux (Figs. 17 and 18) more closely resemble a 
vortex-trapped than a seamount-trapped wave. 

We conclude that the diurnal shear layer observed in 
the HRP and XCP measurements is a vortex-trapped in- 
ternal wave forced by the barotropic tide impinging on the 
seamount summit, its subinertial frequency being allowed 
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Figure 16. Radial structure of horizontal velocity for a vortex- 
trapped mode (stippled envelope) constrained by the observed 
range of buoyancy frequency N, core vorticity t,, core radius r0 

and vertical wavelength Xz. If further constrained to have the 
observed Kj diurnal Eulerian frequency, only the solid envelope 
results, corresponding to an inner radial wavelength of 27 km 
and an outer (decay) radial wavelength Xr = 25 km. A 
seamount-trapped wave has identical radial structure (A). XCP 
observations (t) lie near the model curves. 

by the strong negative vorticity of the vortex cap. If this 
interpretation is correct, then, for deep seamounts where 
the only significant slightly subinertial forcing is the 
barotropic tides, this phenomenology will be found only 
just poleward of 30°. Equatorward of 30°, diurnal fre- 
quencies can propagate as free internal waves and thus 
will not be trapped. Much poleward of 30°, a vortex cap 
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Figure 17. Coherence magnitude (upper panels) and phase (lower panels) as a function of vertical wavenumber for XCP and 
HRP profiles at radius r = 6-10 km. Phase relations for vortex- and seamount-trapped waves are shown by the light and dark 
stippling, respectively. The spreading of the phase relations by an eddy viscosity ve< 100 x 10~4 m2 s"1 (Appendices B and 
C) is shown for Xz> 100 m. Coherence is significant for vertical wavelengths Xz = 100-300 m. In this band, radial and 
azimuthal velocities are 90° out of phase (consistent with the CCW turning with depth), radial velocity u/ and vertical displace- 
ment ^ 180° out of phase (corresponding to an outward radial heat-flux), and azimuthal velocity ve' and vertical displacement % 
90° out of phase. These last two phase relations are consistent with vortex-trapped waves propagating upward and clockwise 
around the seamount, but not with seamount-trapped waves. 

will not be strong enough to allow a free diurnal wave in 
its confines or, equivalently, the vertical wavelength of an 
allowed vortex-trapped wave (2) would be so small that 
its amplitude would be undetectable. These restrictions 
may not apply to shallow seamounts, where broadband 
atmospheric forcing includes slightly subinertial frequen- 
cies that will be resonant with vortex-trapped waves. 
Given the intermittency of atmospheric forcing and the 
short decay times of the observed wave, vortex-trapped 
waves may appear only during forcing. The above is 
consistent with Codiga's (1995) finding of a diurnal 
seamount-trapped wave atop shallow Cobb Seamount at 
46°45'N. 

Elevated turbulence levels of e ~ 10"7 W kg"1 are 
found coincident with the vortex cap and the diurnal oscil- 
lation, corresponding to eddy diffusivities of 10 x 10"4 m2 

s"1.   This is not sufficiently enhanced for seamounts to 

play a dominant role in global mixing of the pycnocline, 
in particular, for them to account for an average eddy dif- 
fusivity of 10-4 m2 s-1 inferred from a diapycnal advec- 
tion-diffusion balance (Munk, 1966). With the mixing not 
occurring in the ocean interior or at lateral boundaries, the 
surface seems the most likely site of diapycnal mixing for 
the ocean. 

Acknowledgments. We thank Charlie Eriksen and Ken 
Brink for making their moored current-meter data 
available to other Fieberling Seamount investigators. 
Valuable insights into seamount-trapped waves were pro- 
vided by Ken Brink and Dan Codiga. The HRP data were 
collected and analyzed under ONR contract N00014-89-J- 
1073. The XCP data were collected under ONR contract 
N00014-90-J-1535 and analyzed under contracts N00014- 
90-J-1535 and N00014-94-1-0038. 



FINE- AND MICROSTRUCTURE OBSERVATIONS ATOP FIEBERLING SEAMOUNT 35 

r (km) Dissipation Rate   (W kg    ) 

0.05 

0.04 

ro.03 

1-0.02 

0.01 

3 6                      9 12 15 
"' 1 

•tr« :* 
• A      A - 

*•• • j.- i ; 
:     >•" -«!•    • .»                 "          '-   A 

_ 

.  .  .  .  t 

• • 
• •   • • 

A 
4 

• 
A  A A 

m A 

Al 

• *J—- J 

i 
'. 

Figure 18. Radial structure of rms radial velocity ur' (a), rms 
vertical displacement ^' (b) and the real (co-spectral) part of the 
radial displacement flux ur%' (c) in the Xz= 100-300 m band. 
Dots and triangles correspond to values from individual XCPs 
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ues. The dotted curve in the ur%' panel depicts a vortex-trapped 
wave model prediction given the rms ur' radial structure, the 
dashed line uses the rms ur' inside 1-km radius and the vortex- 
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Figure 19. Average kinetic energy dissipation rate e (W kg"1) as 
a function of depth and radial distance from seamount center 
with 97% bootstrap confidence limits. Averages are in 100-m 
thick depth bins, and radial bins over the summit plain, about the 
rim, the 1500-m isobath, the 2500-m isobath and > 10 km from 
the seamount center. 
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Figure 20. Average turbulent eddy diffusivity Kp (m2 s_1) in- 
ferred from the kinetic energy dissipation rate e (Fig. 19) as a 
function of depth and radius. Error bars are 97% confidence 
limits determined with bootstrap methods. A mixing efficiency 
of 0.25 is assumed (Oakey, 1982). 
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Appendix A: Vortex-Trapped Near-inertial 
Waves 

Following Kunze et al. 1995), consider the equations of 
motion for a hydrostatic (CO, « N) internal wave of the 
form V]/ = \|/o(r)-exp[i(«0 + kj. - 0%0]. where n is the az- 
imuthal mode number, kz the vertical wavenumber, and co£ 

the invariant Eulerian frequency, inside an axisymmetric 
vortex Ve(r) 

—i 

3£ 
V&='dr 

/+^  + 

e     9V^1 
dr J 

ur=- 
inp 

0 = - ikj> + b 

-i  [co£-^]fc + Aßw=0 

p = 
-N2w 

b = 
-j'A^w 

CO; 

(Al) 

1 d(mr)       invQ 
 V"^   +     + ik,w = 0 , 
r    or r 

where (ur, ve, w) are the radial, azimuthal and vertical 
wave velocities, Ve the mean azimuthal velocity, b = -tP% 
the wave-induced buoyancy anomaly, p the wave- 
induced pressure, and the intrinsic frequency co,= <%- 
nVQ/r. Assuming that the buoyancy frequency depends 
only weakly on radius, the radial derivatives of co, and p 

are 

3COJ      n rVfl    9Vfl 
dr 

i _ D. \v&_ÖVe ] 
dr 

TV2 oV      nN2 ,Ve   d]k 3fi =_ 
dr co,^. dr T co,-2^,7A r dr- 

(A2) 

(A3) 

Thus, the two horizontal momentum equations in (Al) 
can be expressed 

2Y§.]    _ N2 dw _  nN2  /%    dV( 

r   -*Ve ~ co,^ dr     C0;2^r 

-/C0;V8 + 
Vfi    avfl i     . «/v2 

(A4) 

3r   J r      co,^r 

The azimuthal momentum equation implies 

irf+Ve/r+dVe/dri nN2 

~      L m. J   r ve=- co,V w (A5) 

-i(üiUr- y^i 

which, when substituted into the radial momentum equa- 
tion and continuity, yields 

-MV[o}2 -(f + 2Ve/r)<f+Ve/r+ dVe/dr)]ur 

= W2C0;r^n -nN2<f+3Ve/r-dV6/dr)w 
'   dr 

->[ 
d(rur) 

rp-N2 - co,-2^2r2 J     3r 
ovV 

r2 J 

(A6) 

r nto&i1f+VB/r + dV0/dr) 1 

For an azimuthal mode n = -1, n2A^ « C0;2^.2r2 provided 
r » N\/(2TUöi) = 3 km for N = 5 x lfr3 sz, A,z = 210 m 
and cq = K! + ^/2 = 5.7 x 10~5 s-1. Except in the inner 
core, the vertical velocity w can be simplified to 

i fa    . Y(Ql+n(f+VJr + dVtBr)~\ 
\or coAr ±J_ 

(A7) 

with radial derivative 

w  _1<P%.      , ["co,; + n(f+V&/r + dVe/dr) ~| dur 

\r   ~ K dr2   +l*- m&r J dr 

n    d2Ve I C0,^r dr2 
(A8) 

r       ^ \ ^r2 /J 
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Substituting w (Al) and dw/dr (A8) into (A6), 

d\       ["(0,- -2n(Ve/r-dVe/dr)\ dur 

dr2       L Qy.r J gr 

{j*_<^e   + [co,-2 -(/ + 2V&/r)tf+ VQlr + dVQldf, 
»- CO,- r dr2 N2 

W2 

(A9) 

+ L N2 

co,-2 - 2co ■y+^o2/r2)+/Cf+ 3^0Vr2)1 
r,,2r2 J"r C0,zr 

For r » N/faik,), this can be approximated as 

[(Oj + n(f+Vt/r+dVtBr)][(al+n(f+Wt/r-'BVB/dr)]     \       ^+ \i+^ju\dlk + ["(co,-2-/(/f+^0
2/r2))A,21    =Q 

m2r2 J dr2     *-r     C0,r2 J dr     L N2 J  r 

x ur = 0 . 

A.l Application 

Consider a vortex containing a core in solid-body rota- 
tion C, inside radius r= r0 and azimuthal velocities falling 
off as r _1 outside the velocity maximum (C, = 0). Also re- 
call that the observed wave has azimuthal mode 
n = -1 corresponding to clockwise propagation around the 
vortex. 

A.2 Inside the Core 
For r < r0, Ve = t>/2, Ve/r = dVe/dr = £/2, and 

d2V6/dr22 = 0 so that (A9) can be simplified to 

d2ur      1 3«r 

3r2       r dr 

(AH) 

+ L      tp 
2\t 2 (CO; =^ IK =0 

which, in the context of our previous assumption that 
r » A^co,-^) or recognizing that cq - f$ «co,- for the 
near-inertial waves of interest here, simplifies further to 

d2u. 1 dur 

r dr 
+ ^+^MMUr=0 (MO) 

where/^ = / + C, as found by Kunze er al. (1995). This 
has Jo(krr) Bessel function solutions for co, > fa where the 
radial cylindrical "wavenumber" 

A.3 Outside the Core 
For r > r0, Ve = C>0V(2r), VQ/r = t, r2/(2r2\ 

dVe/dr = - t,r2/(2r2), dVtfdr2 = C,r0
2/r' where £ is the core 

vorticity, and (A9) can be simplified to 

oA[i+^] 
or1     Lr     co,r3   J 

dur 

dr 

which becomes a modified Bessel equation 

d\      Idu^      [«öi2-fi)k2~\ 
dr 

= 0 

with trapped solutions K0(kor) where k0 = k^jf2 - cq2 /N 
as r —> °° for CO,- </. 

A vortex-trapped near-inertial wave will have Bessel 
function solutions inside the core (r<r0, co, >/«#■) (A 10) 
and distorted modified Bessel function solutions outside 
the core (r > r0, co, </) (All). Finding trapped radial 
modes involves matching the Eulerian frequency co£ = K [, 
the vertical wavelength \, the azimuthal mode number n, 
the radial velocity ur, and the radial divergence d(rurydr 
at r=r0. Kunze etal. (1995) neglected terms involving 
t,r2/r2 in (All) so that analytic solutions Jo(krr) and 
K0(kQr) could be matched. This was also done for the en- 
velope of solutions displayed in Fig. 16 which correspond 
to the observed range of buoyancy frequency N = (4-5) x 
10"3 s_1, core radius r0 = 5-7 km, core vorticity -0.52/to 
-0.45/, vertical wavelength \ = 170-220 m and Eulerian 
frequency co£ = K]. Neglecting the straining terms C,r0

2/r2 

in (Al 1) will have a slight effect on the inner radial wave- 
lengths 27i/ferand the outer radial decay lengths 2jt/fc0 but 
this has not yet been quantified. 

Appendix B: Viscous Near-inertial Waves 
Consider the equations of motion for hydrostatic recti- 

linear internal waves of the form \\f = \jr0(r)-exp[/(&xx+ kzz 
- co,0L where k = (kx, 0, k^) is the wavevector chosen so 
the horizontal direction of propagation lies along the 
x-axis (ky = 0) and CQ the intrinsic frequency damped by 
eddy viscosity ve and eddy diffusivity Kg, 

-/co,« -fv = —ikj> + vjc^-u 

-ifü-v+ju =vjc2v 

0 = -ikj)+ b 
K 

(Bl) 
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-i(üjb + KP-w = Kjc^b 

kxu + kfW = 0 

so that 

[u>i-ivek
2]-u-fi> = 

-iPfiw 
"(C0,-iK^2) 

-kxit 

"Z 

tf-k^-u 

(oo,-iK^2)k. 2^2 

-[iozi+vjcz
2]-v + ju=0 

and the buoyancy is 

v = 
-ifu 

(Wi-ivjc,2) 

(B2) 

fc = 
ibP-kxu 

((üi-iKjcz
2)kz 

(B3) 

Substituting the boxed expression for v in (B2) into the 
first expression in (B2) and assuming weakly-damped 
(vjcz

2, KJC
2

 <<f) near-inertial (N2!^2 «f-k2) waves, the 

dispersion relation can be approximated by 

G}=/+ 2fkz 
-+ivjcz

2 (B4) 

The effect of viscosity appears as a weak evanescence in 
time (or in the direction of energy propagation Q). 
Within the context of this approximation, the eddy diffu- 
sivity has no impact on the dispersion relation because 
near-inertial waves have relatively weak buoyancy 
signals. More general viscous internal wave behavior can 
be found in LeBlond (1966). For ve = 10 x 10"4 m2 s~! 

and Xz = 100-300 m, vJc2 = (0.4-4.0) x 10"6 s"1 so is 

much smaller than the Coriolis frequency/ = 7.8 x 10"5 

s-1. Substituting the dispersion relation (B4) into (B3) 
and (B2), we obtain the following consistency relations 
between the buoyancy b, north velocity v, and east 
velocity u: 

b = 
NJK .Wk*     (v.- Kjkz 

l2fV + 

r   tfk21 
-~l L1_9f2t2 J 

/ 

rfk2 

(B5) 

Ipk2 ■u. 

The phase relations between uv, ub and vb are then 

K 
:2 

, 2/2L2-W2^2 

^=ArctanLw(Ve_^2. .[" J 
(B6) 

Arctan[ X 
(ve-Ke)kz 

fa, =Arctan r-(v« ^e)^z 

/ 

so that the two horizontal velocity components remain 90° 
out of phase but the velocity and buoyancy perturbations 
have slightly modified phase relations if the eddy 
viscosity and diffusivity differ from zero and each other 
(eddy Prandtl number ve/Ke ^1.0). For an eddy viscosity 
ve = 10 x W^ m2 s_1 and Xz = 100 m, the phase relations 

differ by at most 3° from their inviscid values. These are 
shown in Fig. 17 for Prandtl numbers ranging from zero 

to infinity. 

Appendix C: Viscous Stratified Topographic 
Waves 

Following Rhines (1970) and Appendices A and B, the 
equations of motion for stratified bottom-trapped topo- 
graphic waves with eddy viscous ve and diffusive Kc forc- 

ing on gentle slopes (a « 1) are 

-?'(co - iv^±
2)un -fv = -ik\\ p+ba 

-j(co - ivjc±2)v +fa\ = -ikyp 

fav = -iktp + b (Cl) 

-i(co - iKjc±
z)b = -A^OCKII 

-iAPoc-Kii 
~ (CO - iKjCj2) 

-&II «II 

v= ^ 
i Iq u\\ + kyV = 0 

where (wB, v) are the across- and along-isobath velocities 
parallel to the bottom, the flow normal to the bottom w± is 
assumed to vanish identically, and (k\, ky, k±) are the 

across-isobath, along-isobath and normal wavenumbers in 
a coordinate system lying in the plane of the bathymetry. 
It has been assumed that k± » kx, ky in the viscous terms 

consistent with the observations. Substituting the boxed 
expressions for buoyancy b and along-isobath velocity v 
into the first three expressions of (Cl), 

L l +i.     + /-    ■•-', 2^;,    lu\\--lP ky        (CO - iKjCj2)^ 

iffo-ivjc^yci      f 
ky2 ky "II       =-tP (C2) 

-fak, iffia 
kyk±   ■ (co-^x2)^-^1      ip 

or, equating the lefthand sides, 
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A^a2/L2 

(co - ivJc±
2Xco - KjiL

2) =    , 2 
KH 

(co - ivJc^X co - iKjc^kf k± (C3) 

- #yfci(co - iKjc±
2) - N2ak2 = 0, 

which can be solved for co and k± in terms of N, f, a, ve, 
Kp ky and kj. Assuming that the frequency co is changed 
only slightly so that it can be expressed in terms of 
the inviscid solution co = Naky/kH + 5co, where 8co « 
Naky/kH, the first equation in (C3) implies 

^N^ +i(ve+*e)kx
2 (C4) 

where Naky/kH ~ f»vek±
2, K^X

2
 from before. Sub- 

stituting (C4) into the second equation in (C3) gives 

A^q2Ä^| kL (Naky    i(ye- K^kj2 \ 
kf2        -iß±\ K   + 2 ) 

(C5) 

and, assuming a solution for kL perturbed about the invis- 
cid solution 

u   _        NkH _ A1,   2      M^+ifrH (rf, 
k± ~ Nak^{ - ifkH   "m" A^oc2*, 2 + fikH

2 '       (^b) 

leads to a viscous perturbation 

0±~2aky(Noik,-ißH)'i   ■ (    ' 

This could blow up if ky= 0, invalidating the small per- 
turbation approximation. Based on the observational 
results of a diurnal Eulerian frequency co£ = K] and an 
imaginary vertical wavenumber at most comparable to the 
real vertical wavenumber, kz~ Re{k±], we can quantify 
the relationship between buoyancy b and u\\ in (Cl) 

* =     «(v.-Kjfc±'
=   /      L      2/        

+'J»»     (C8) 
/+ 2 

so the phase relation between u\\ and b becomes 

^=Arctan((v7^) (C9) 

perturbed from the inviscid solution by half the amount 
that viscous near-inertial waves are perturbed from their 
inviscid solution. We apply viscous phase relation offsets 
(B6) and (C9) to seamount- and vortex-trapped waves 
under the assumption that the geometry is not a major 
consideration. 



Waves Trapped To Discrete Topography: 
Existence and Implications 

D.S. Luther 
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Abstract  The characteristics of observed energetic waves trapped to discrete topographic features, especially 
islands and mid-ocean ridge segments, are discussed. Resonant oscillations may occur due to closed propagation 
paths or zero group velocity along isobaths. The waves are forced directly by fluctuating winds, and may also be 
forced indirectly through the atmosphere's excitation of open ocean waves that subsequently impinge upon the 
topography. Evidence of energy leakage from one resonant island trapped wave to a resonant wave trapped to a 
neighboring island is reviewed. The potential importance of the poorly understood island and ridge trapped waves to 
teleconnections, mixing at the water-earth boundary, effluent dispersal, and general circulation simulations is noted. 

Introduction 
Perhaps the most important characteristic of the 

ocean's many types of free waves is their ability to pro- 
pagate information about a disturbance from the region 
of forcing to an otherwise quiescent distant location. 
Waveguides, produced for example by topography at a 
coast (e.g., yielding refractive trapping to the coast), or 
by the reversal of sign of the vertical Coriolis parameter 
at the equator (equatorially-trapped waves), etc., 
enhance this characteristic by reducing the energy loss 
that would otherwise occur if the wave were to pro- 
pagate in all directions indiscriminately. The wave is 
focused in a particular direction so that its energy den- 
sity is not diminished by dispersal in multiple direc- 
tions. For example, long period waves (periods greater 
than a day) trapped to continental coastlines are now 
well respected for their impact on currents and tempera- 
ture fields far from the point of origin (e.g., Brink, 
1991). Long period waves trapped to the equator play a 
variety of roles in the onset and maturation of climati- 
cally significant phenomena by propagating information 
about atmospheric changes across ocean basins (e.g., the 
El Nino phenomenon; Philander, 1990). 

This note reviews some wave types whose existence 
has received minimal attention in the literature, and 
whose impact has been noted only briefly but could be 
substantial in both the teleconnection sense outlined 
above and the local sense of how strong the ocean's 
response will be to imposed forcing. The waves in ques- 
tion are those trapped to discrete topography, by which 
is meant topography of limited extent, though this con- 
cept will not be made precise for this review. Such 
topographic features as islands, seamounts, ridge seg- 
ments and plateaus enable many kinds of free waves to 
exist that are trapped to the topography in a stratified 
ocean and therefore are guided to freely propagate in 
(usually) only one direction, i.e., along isobaths. 

The reason the scale of the 'discrete' topography will 
not be defined rigorously is that some of the more 

interesting observations that have arisen lately are of 
waves trapped to a mid-ocean ridge segment, e.g., the 
Juan de Fuca Ridge. These waves raise the question of 
existence and propagation for long distances along the 
mid-ocean ridges. If a ridge-trapped wave were gen- 
erated by a storm in the South Pacific Ocean could it 
propagate up to the equator along the East Pacific Rise? 
This paper will concentrate on discussing those observa- 
tions of waves trapped to more discrete features, espe- 
cially the Hawaiian Islands and the Juan de Fuca ridge 
segment. Waves trapped to seamounts, which have been 
found to reach amplitudes up to 40 cm/s (Eriksen, 
1991), are treated by other authors in this volume. 

There are now quite a few observations of narrow- 
band (in frequency) wave motions that appear to be 
resonances of the oceanic fluid system in the presence 
of discrete topographic features. These resonant waves 
are the most easily identifiable members of the whole 
class of oscillations which can exist at discrete topogra- 
phy, but are just a small portion of this class. The reso- 
nance can occur because the wavelength of a particular 
wave neatly circumscribes the discrete topography in an 
integral number of wavelengths, or because the charac- 
teristic dispersion of the trapped oscillations admits a 
zero group velocity point in the (single) direction of 
propagation thus allowing energy to accumulate. 
Perhaps what is most remarkable about these resonances 
is their existence at all, and especially their existence as 
underdamped oscillations in the presence of highly 
irregular topography that intuitively would be expected 
to cause strong damping. As will be seen, the irregular 
topography of such features as mid-ocean ridges does 
not seem to inhibit the existence of resonances which 
necessarily have been studied with only the smoothest 
of ideal geometries. 

The resonant oscillations are easy to study, and have 
been studied with datasets not specifically intended for 
that purpose, because their amplification at discrete fre- 
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quencies makes them identifiable in autospectra of oce- 
anic variables taken at widely separated locations, and, 
because being narrow-band in frequency usually implies 
small wavenumber bandwidth, leading to relatively high 
horizontal coherence. Thus it is easier to describe these 
phenomena from a sparse array of instruments than it is 
to describe broad-band phenomena. 

An important practical consequence of narrow-band 
resonance among trapped waves is that the resonant 
waves are reservoirs of energy well above what would 
be present at the topographic boundary due to ambient 
open ocean variability. Such reservoirs must have an 
impact on mixing at the boundaries, or on dispersal of 
the products of such mixing, especially since the 
trapped waves tend to have their largest amplitudes 
right at the boundary. If you subscribe to the idea that 
sub-thermocline mixing occurs at water-earth boundaries 
(Gilbert and Garrett, 1989), then at mid-depth levels 
(2000m - 3000 m) in the ocean you have to be con- 
cerned about what motions exist along the -50,000 km 
of mid-ocean ridge crests. Irrespective of a role in glo- 
bal mixing, the resonant oscillations definitely play a 
role in the redistribution of anthropogenic and hydroth- 
ermal effluents (e.g., Cannon et al, 1991), as will be 
clear from the following examples. It is also clear that 
non-linear advection can result in strong residual 
currents, as already demonstrated by observations (Erik- 
sen, 1991) and numerical simulations (Haidvogel et al, 
1993) of resonant waves at seamounts. 

Killworth (1989a) has emphasized the importance of 
topographic waves in extracting energy from coastal 
Kelvin waves (when the ridge intersects a coast). A log- 
ical extension of this idea is that ridge waves may be 
important sinks for open ocean Rossby wave energy. 
The implications for general circulation models which 
either don't have the horizontal resolution to resolve the 
various topographic wave modes or incorporate general 
Laplacian damping is that the shorter-scale topographic 
waves will be under-represented resulting in under- 
damping of the Kelvin or Rossby type motions. 

On the following pages I will present examples of 
what appear to be resonant oscillations trapped to 
specific topographic features, including especially the 
Hawaiian Islands and the Juan de Fuca Ridge. The 
material presented is from both a review of the litera- 
ture and ongoing research. 

Considering that many topographic waves are physi- 
cally distant from the sea surface and hence apparently 
isolated from the action of surface winds, investigation 
of how the waves are forced has led to some especially 
intriguing observations and speculations of new energy 
pathways or energy transfer mechanisms. Waves trapped 
to seamounts and ridges, for instance, that are evanes- 
cent upward still may be forced by atmospheric winds, 
either directly via the wind's establishment of forced 
oscillations that are evanescent downward from the sur- 
face but still intersect the topography (producing a "tun- 
nelling" of energy from the surface to the topography), 

Table 1. Examples of waves trapped to discrete topography 

Period Characteristics References 
Ridge Segments 

Juan de Fuca Ridge (~46°N, 129°W) 

Faroe-Iceland Ridge (~63°N, 10°W) 

Banks, Plateaus, Seamounts  

Rockall Bank (~57°N, 14°W) 
Yermak Plateau (~82°N, 10°E) 
Fieberling Guyot (~32°N, 128°W) 

Islands 

Bermuda Is. (~32°N, 65°W) 

Hawaiian Is. (~21°N, 157°W) 

Kerguelen Is. (~49°S, 70°E) 

4 days 

1.8 days 

1 day 
1 day 
1 day 

baroclinic; trapped to ridge crest 
horizontally and vertically 

barotropic; trapped horizontally 

barotropic; trapped horizontally 
barotropic; trapped horizontally 

baroclinic; bottom trapped; 
rectification observed 

Thomson (1989) 
Chave et al. (1989) 

Cannon et al. (1991) 
Allen and Thomson (1993) 

Miller et al. (1995) 

Huthnance (1974) 
Hunkins (1986) 
Eriksen (1991) 

Noble et al. (1994) 

10 hrs to 17 dys   baroclinic; Kelvin Wave analogue 

17 hrs to 5 dys    baroclinic; Kelvin Wave analogue 

Wunsch (1972a) 
Hogg (1980) 

Eriksen (1982) 
Luther (1985) 

Lumpkin (1995) 
1.5 dys barotropic; shelf wave analogue     Saint-Guily and Lamy (1988) 
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or indirectly through generation of free barotropic 
waves which subsequently propagate into the region of 
a ridge. That the surface atmospheric fields do generate 
both evanescent and free barotropic waves at sub- 
inertial frequencies has been theoretically investigated 
(e.g., Frankignoul and Müller, 1979; Müller and Fran- 
kignoul, 1981) and observationally confirmed (e.g., 
Luther et al., 1990; Chave et al., 1992). The intermedi- 
ary oscillation could transmit the atmosphere's effects 
over long distances before exciting the topographic 
waves, as may occur with surface gravity wave excita- 
tion of trapped waves around the Hawaiian Islands. 
Finally, resonances on neighboring topographic features 
may co-oscillate after one or the other resonance has 
been excited, as the trapped waves around the Hawaiian 
Islands demonstrate. Examples of some of these 
phenomena will be presented in the following pages. 

Some Examples of Waves Trapped to 
Discrete Topography 

Table 1 summarizes characteristics of some oscilla- 
tions that have been observed at discrete topographic 
features. This is not an exhaustive list, but it will give a 
flavor of the growing number of observations of such 

Explorer 
Ridge ouvtr 

cattle 

Juan de Fuca 
Ridge 

Cleft Segment 45' 

130' I25°W 
Figure 1. Line drawing of the Juan de Fuca Ridge and its 
segments. Three open squares show approximate locations 
of some of Cannon et al.'s (1991) moorings, including one 
between Axial and Brown Bear seamounts; the open circles 
indicate locations of five of Chave et al. 's instruments; and, 
the cross at the end of the Endeavor Segment locates the 
Thomson (1989) array. Circles with dots are seamounts: (A) 
Axial; (B) Brown Bear; (C) Cobb; and, (V) Vance. Figure 
modified from Cannon et al. (1991). 

waves, and will provide some information on their 
salient features. Note that seamount trapped waves are 
treated in detail by other authors in this volume, and so 
will not be discussed further here. In this section, obser- 
vations of waves trapped to the Juan de Fuca Ridge and 
to the Hawaiian Islands will be explored. 

Ridge Waves 

Cannon et al. (1991) describe several years of current 
and temperature observations from instruments moored 
at the southern end of the Juan de Fuca Ridge (JDFR) 
and at Axial Seamount in the middle of the ridge (Fig- 
ures 1 & 2). Instruments near the ridge crest are dom- 
inated by a -4-day oscillation that rotates predom- 
inantly clockwise (Figures 3 & 4). The oscillation is 
ubiquitous in all records in all years (Figure 4). The 
oscillation has maximum currents near the bottom in the 
rift valley. Near-bottom amplitudes are not uncommonly 
10-15 cm/s (Figure 3). The currents decay upward and 
away (perpendicularly) from the ridge axis. Near the 
bottom the 4-day oscillation is more energetic than the 

I30°30' I30"00' 

Figure 2. Chart of the southern end (the Cleft Segment) of 
the Juan de Fuca Ridge showing detailed locations of some 
of Cannon et al.'s (1991) moorings. Moorings are shown 
by solid circles with identification (ID) numbers on the 
right (4, 12, and 19 are at the same central location; 8 is on 
the west side; 11 is on the east side). Solid lines between 
open circles are conductivity-temperature-depth (CTD) sec- 
tions. The contour interval is 100 m, and 2300-2400 m are 
stippled to better outline the ridge. Figure modified from 
Cannon et al. (1991). 
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Figure 3. Currents (2.8-hour filtered) along 20° true in the rift valley of the Juan de Fuca Ridge 
(mooring 19, south; 18, north; see Figure 2) and across (10° true) the Axial-Brown Bear sill (Figure 1) 
for winter 1988, showing the 4-day signal dominating the tidal flows. Vertical line shows northward 
propagation of the 4-day oscillation. Figure taken from Cannon et al. (1991). 

tides and inertial oscillations (Figure 4), but a few hun- 
dred meters off the bottom it is not. The oscillation is 
most energetic in winter suggesting direct atmospheric 
forcing, which is borne out by coherence between local 
wind stress and currents at mooring 19. 

The oscillation is highly correlated along and across 
the ridge. Cannon et al.'s (1991) experiment extended 
about halfway along the JDFR (Figure 1) for a distance 
of approximately 150 km. Coherence phases among all 
the Cannon et al. (1991) moorings, irrespective of loca- 
tion across the ridge, indicate a northward phase propa- 
gation of 1-1.5 m/s. This phase speed range corresponds 
to a wavelength range of -350-500 km that brackets the 
-450 km length of the JDFR. 

At the northern end of the JDFR, on the Endeavor 
Segment approximately 200 km north (Figure 1) of 
Cannon et al's (1991) most northerly instruments, 
Thomson (1989) and Allen and Thomson (1993) report 
observations of a 4-day oscillation with the same 
characteristics (such as clockwise polarization, 
amplification near the ridge crest, and vertical trapping) 
as reported by Cannon et al. (1991). 

Chave et al. (1989) report observations of the 4-day 
oscillation in measurements of the horizontal electric 
field made on and near the JDFR. At periods greater 
than 1 day, the horizontal electric field is proportional 

to the vertically-averaged horizontal water velocity, an 
effect due to motional induction caused by the seawater 
moving through the earth's stationary magnetic field. 
The array of electrometers was able to detect clearly a 
decay of the oscillation away from the ridge axis, as 
well as the clockwise rotary character of the motion at 
the ridge. They also find a factor of 3 decay of energy 
along the ridge, from south to north, over -150 km dis- 
tance. This last observation is consistent with the energy 
levels reported by Cannon et al. (1991) compared with 
those shown by Allen and Thomson (1993). The Chave 
et al. (1989) results deviate from Cannon et al's (1991) 
in their estimation of a southward propagation speed for 
the wave on the eastern flank of the JDFR, whereas 
Cannon et al. (1991) report northward propagation on 
both sides of the crest. 

The 4-day oscillation is certainly a type of stratified, 
topographic oscillation. Allen and Thomson (1993) have 
simulated many of the characteristics (e.g., clockwise 
polarization, bottom and ridge crest trapping) of the 
oscillation with a forced model under the assumption of 
no along-ridge variability. Killworth (1989a, 1989b) 
has performed the most complete analysis to date of the 
potential suite of free oscillations trapped to a ridge, but 
necessarily restricted his model to no more than two 
fluid layers to retain a certain amount of analytical trac- 
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Figure 4. From top to bottom, auto-spectral densities for 
temperature at 2000 m at mooring 12, currents at 2000 m at 
mooring 12, currents at 2000 m at mooring 19, and near- 
bottom currents at 2200 m at mooring 19. Mooring 12 was 
deployed in 1986-1987, while mooring 19 was deployed in 
1987-1988. For the currents, the solid curve is clockwise. 
Confidence limits of 95% are shown for 24 degrees of free- 
dom. Figure taken from Cannon et al. (1991). 

tability. Even so, Killworth's models provide enough 
information on wave structure and dispersion to specu- 
late as to why the JDFR 4-day oscillation is resonant, 
and why there might be different phase propagation 
directions at different distances from the ridge. 

Many of the solutions presented by Killworth have 
very asymmetric structures. That is, they have very 
large amplitudes only at the crest and on one side of the 
ridge, i.e., the side where the ridge crest is to the right 
of the direction of propagation (northern hemisphere 
case). One can then readily imagine that oscillations 
could propagate north along the west side of the JDFR 
and south along the east side. Reinforcement, that is 
resonance, occurs when the distance of a transit around 
the ridge equals an integral number of along-isobath 
wavelengths of the oscillation. The gravest mode (mode 
1) would have a wavelength equal to twice the length of 
the JDFR. The second gravest resonant mode (mode 2) 
would have a wavelength equal to the length of the 
JDFR, and so on. Cannon et al's (1991) phase speed 
measurements could correspond to a mode 2 wave, 
while Chave et al.'s (1989) measurements suggest mode 
1. (N.b., Chave et al. (1989) point out that their phase 
speed estimate is uncertain to about a factor of 2, so 
that their 3 m/s speed is not significantly different from 
Cannon et al.'s (1991) 1.5 m/s speed; Chave et al. 
(1989) definitely observe southward propagation.) 

It is remarkable that such a resonance should occur 
along the JDFR in the presence of that ridge's highly 
irregular topography. Figures 1 & 2 only give a scant 
indication of the true complexity of the topography. 
Notice that the JDFR is not even a single continuous 
ridge, but has several discontinuities (offsets) along its 
length. As will be shown below, resonant waves exist 
trapped to, and propagating around, highly irregular 
island topo-geometries, as well. 

An appealing way to reconcile the existence of a 
resonance with the complicated structure of the JDFR is 
to argue that, for a specific frequency and along-ridge 
wavenumber, zero group velocity along the ridge per- 
mits an accumulation of energy. In this case, one ima- 
gines the resonant character of the wave as being deter- 
mined not by whether a complete circuit of the topogra- 
phy can be circumnavigated by the wave, but by the 
existence of a group velocity zero point on the 
frequency-wavenumber dispersion curves that permits 
local accumulation of energy at a particular frequency. 
Then every small segment of the JDFR can have its 
own zero group velocity point, and, since the cross- 
ridge profile of these segments is nearly the same, they 
could all have resonances at approximately the same 
frequency, and hence excitation of a resonance at one 
location could spread down the ridge. 

The dispersion characteristics of the waves explored 
by Killworth (1989a, 1989b) have particular frequencies 
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and along-ridge wavenumbers where the along-ridge 
oroup velocities are zero, which would then permit the 
accumulation of energy, as for instance is the case for 
equatorially-trapped internal gravity waves (Wunsch and 
Gill, 1976). There would still be phase propagation, and 
given the structures calculated by Killworth, there could 
easily be two oscillations at the same ridge segment 
with exactly the same frequency and exactly the same 
alonc-ridge wavelength, but which have phase propaga- 
tion "in opposite directions and are therefore relatively 
isolated from each other because their amplitudes are 
strongest on opposite sides of the ridge. This scenario 
then could also explain the observations of northward 
propagation on the west side of the JDFR and south- 
ward propagation on the east side. 

What is not explained by either scenario above is the 
apparent dominance of northward propagation at the top 
of the ridge in Cannon et al.'s (1991) observations. Of 
course, for the zero group velocity resonance, one could 
argue that the wave with northward phase propagation 
is "stronger for some reason than the southward pro- 

pagating wave. 
The difference between the two scenarios of reso- 

nance above is more than an esoteric thought experi- 
ment.  Whether  energy  propagates  readily  along  the 
ridge directly relates to the major introductory point 
about whether the effects of forcing at one location on a 
mid-ocean ridge can travel far from the source. If the 
resonance on the JDFR is due to a wave propagating 
energy along the JDFR, then we can conclude that the 
substantial   topographic   irregularities  do  not  impede 
propagation of these mesoscale waves along the ridge, 
hence we could expect to see disturbances propagate 
reasonably rapidly for thousands of kilometers along 
ridge crests. If, however, the resonance on the JDFR is 
due to zero group velocity, then the question of whether 
any ridge waves can propagate very far along a ridge is 
left unanswered, although diffusion of the energy of the 
resonance along the ridge is still possible through leak- 
age to resonant waves on neighboring ridge segments. 

Irrespective of this issue of whether or not the waves 
propagate energy along the ridges, the JDFR resonance 
demonstrates the existence of non-trivial ridge-trapped 
oscillations, which has a number of important local 
implications as outlined in the introduction. 

Island-Trapped Waves (ITW) 
Using sea level data, Luther (1985) showed that both 

sub-inertial and super-inertial waves are trapped to indi- 
vidual islands of the Hawaiian group. A few of the 
modes identified by Luther (1985) are indicated in sea 
level power spectra in Figure 5. That these oscillations 
can be associated with substantial current amplitudes is 
demonstrated in Figure 7. Luther (1985) established that 
the   sub-inertial   trapped   oscillations  were  baroclinic, 

io4rr 

(days) 
30        20     15 

Frequency (cph) 
Figure 5. Energy density spectra of adjusted sea level (the 
isostatic effect of air pressure has been removed) from Hilo, 
Honolulu and Nawiliwili (see Figure 6 for locations), 
employing 24, 18 and 13 years of data, respectively. 
Suspected ITW are indicated with arrows. The inertial fre- 
quency for the mean latitude of each island is indicated 
with /. For ease of comparison, each spectrum is displaced 
from its neighbors by one decade along the ordinate. The 
diurnal and semi-diurnal tidal peaks in the Honolulu and 
Nawiliwili spectra have been clipped to simplify the figure. 
The fortnightly and monthly tides are clearly evident. The 
95% confidence intervals at the bottom of the figure are 
exact for Nawiliwili but are slightly large for the other 
spectra. An increasing averaging bandwidth results in a 
decreasing confidence interval as frequency increases. The 
confidence intervals apply to each independent point. Every 
other point plotted is independent. The ordinate is in units 
of (cm flcph. 
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Kelvin-like trapped waves as first described by Wunsch 
(1972a) at Bermuda. The dynamics of the super-inertial 
modes are still unknown. 

The potential impact of ITW on horizontal dispersion 
near Hawaii is suggested by Figure 8; band-passed 
currents (integrated over time) are shown in four fre- 
quency bands, including the sub-inertial band encom- 
passing the gravest ITW mode around the island of 
Hawaii. Assuming the integrated currents emulate the 
Lagrangian drift of fluid particles, trapped waves were 
responsible for advection over 6 km compared to 2 km 
for inertial, diurnal and semi-diurnal motions. 

Since baroclinic modes other than the first have little 
sea level deflection (unless the higher modes are sub- 
stantially more energetic than the first), Luther (1985) 
necessarily only found clear evidence for first baroclinic 
modes, with a hint of a couple of second baroclinic 
modes. At Oahu, for instance, power spectral peaks at 
1.5 days and 2 days (Figure 5) correspond to peaks in 
coherence amplitude between sea level stations on 
opposite sides of the island (Figure 9). The coherence 
phase at these periods is not significantly different (at 
the 95% level) from what would be expected (-105°) 
for an azimuthal mode 1 wave propagating clockwise 
around the island as appropriate for Kelvin waves. 
Luther (1985) concluded that the 1.5 day oscillation was 
the 1st baroclinic, 1st azimuthal ITW mode for Oahu 
and that the 2 day oscillation was the 2nd baroclinic, 
1st azimuthal mode. 

At Bermuda, where sea level deflections of the modes 
are not at all robust (compare Wunsch's, 1972b, Figure 
2 with Figure 5 here), Hogg (1980) observed modes as 
high as the 4th baroclinic in current meter data. For the 
island of Hawaii, the 4th baroclinic, 1st azimuthal mode 
would have a period of approximately 8 days, assuming 
the validity of the cylindrical model for computing the 
resonant periods. Hogg (1980) also speculated that 
strong coherence among current meter records at -17 
days may be due to an island or topographically trapped 
oscillation. This information is presented simply to indi- 
cate the potential range of periods for which trapped 
waves may provide a significant amount of the 
nearshore variability. 

Figure 10 shows power spectra of azimuthal velocity 
taken from a mooring (CIO in Figure 6) near the island 
of Hawaii. A clear peak at 2.7 days period is seen at 54 
m and 363 m. This is probably the 1st baroclinic, 1st 
azimuthal mode identified by Luther (1985) and seen in 
Figure 5 (top). At the deepest depth available (771 m), 
the 2.7-day peak is no longer evident, but a peak at 4.5 
days is seen. Whether this longer period peak represents 
a higher baroclinic trapped mode(s) is the subject of 
current research. At the moment, the cause of the 4-5 
day peak at 771 m in Figure 10 is suspected to be that, 
at this depth, the graver baroclinic/radial modes with 
smaller periods are relatively weaker than the higher 
baroclinic/radial modes with longer periods. Our intui- 
tion  on this  point comes  from the results of Brink 
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Figure 6. Map of the Hawaiian Islands showing locations of sea level and meteorologi- 
cal stations and current meter mooring sites, not all of which are mentioned in the text. 
Dark shading is land; light shading defines the 100 m isobath. The 1000 m isobath is 
also shown. Figure taken from Lumpkin (1995). 
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Figure 7. Sea level from Hilo and Kahului (neither 
adjusted for the isostatic effect of air pressure), and currents 
from the Alenuihaha Channel mooring (Figure 6), for a 
time period when the ITW mode around the island of 
Hawaii (-2.5 day period) was particularly strong. These 
data have been low-pass filtered to remove energetic tidal 
fluctuations. Also shown are atmospheric pressure, winds 
and significant wave height from two NOAA buoys to the 
west of the islands (~23°N, 162°W, and ~19°N, 161°W). 
Figure courtesy of M. Merrifield. 

(1989), whose calculations show that the higher 
baroclinic/radial, seamount-trapped modes occur at 
longer periods than the gravest modes and are more bot- 
tom trapped. [The term "baroclinic/radial" modes is now 
used to emphasize that with significant topography the 
classic definition of baroclinic modes is usually not 
valid. Higher modes have more nodes offshore than 
graver modes, but the nodes tend to be neither vertically 
nor horizontally oriented.] 

Identification of as many normal modes as possible is 
an important tool for discriminating the dynamical 
appropriateness of models of variability around the 
islands, akin to the discrimination of earth structure 
models by the enumeration of normal modes of the 
earth (e.g., Gilbert and Dziewonski, 1975). For instance, 

-2-1        0        1        2 
Eastward displacement (km) 

Diurnal band (22-26 h period) 

-3-2-1        0        1        2        3 
Eastward displacement (km) 

Semidiurnal band (11-13 h period) 

-3-2-1        0        1        2        3 
Eastward displacement (km) 

-3-2-1        0       1        2 
Eastward displacement (km) 

Figure 8. Progressive vector plots of the currents at 54 m 
at the Keahole Pt. OTEC-1 site, off the leeward coast of the 
island of Hawaii (Figure 6). Band-passing has isolated the 
motion at 55-65 h period (top left), 32-39 h period (top 
right), 22-26 h period (bottom left) and 11-13 h period (bot- 
tom right). The 55-65 h band encompasses the gravest ITW 
mode around the island of Hawaii. Figure taken from 
Lumpkin (1995). 

Hogg (1980) showed how an ad hoc incorporation of a 
sloping bottom will significantly alter the expected 
equivalent depths for each baroclinic mode and thus 
alter the expected resonant mode periods. 

One of the important results from Luther (1985) was 
the realization that good agreement between the 
observed periods of the first baroclinic sub-inertial 
ITWs and the theoretical periods of simple baroclinic 
Kelvin-like modes trapped to a cylindrical island 
(Wunsch, 1972a) could be achieved by matching the cir- 
cumference of the real island (at the 20m isobath) to the 
circumference of the hypothetical cylindrical island. 
Previously (.Wunsch, 1972a; Hogg, 1980), arbitrary 
idealized geometric figures (i.e., ellipses) were fit to the 
real island geometry and employed to estimate an 
effective cylindrical island radius. But, the cylindrical 
island is not expected to yield very useful predictions of 
higher baroclinic mode sub-inertial ITW frequencies 
(e.g., Hogg, 1980), which can also be deduced from the 
fact that the Burger number (the ratio of the internal 
Rossby radius of deformation to the radial scale of the 
topography) for the higher modes is relatively small. In 
other words, based on Hogg's (1980) work and Brink's 
(1989) study of seamount-trapped waves, it is certain 
that the dynamics of the ITW is non-trivially dependent 
upon      topography,     especially     for     the     higher 
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Figure 9. Coherence amplitude and phase between 8 years 
of adjusted sea level (isostatic effect of air pressure has 
been removed from the sea level) from Honolulu and Moku 
o Loe on the island of Oahu (Figure 6). High coherence 
amplitude is seen at the diurnal and semi-diurnal tidal fre- 
quencies. The high coherence amplitude with zero phase at 
periods greater than 3 days is due to open ocean barotropic 
oscillations. High coherence amplitude at 1.5 and 2 days is 
due to the 1st and 2nd baroclinic ITW modes around Oahu, 
respectively, both of which have auto-spectral peaks in Fig- 
ure 5. The coherence phase at these periods is not 
significantly different from the -105° expected for an 
azimuthal mode 1 clockwise-propagating wave. A possible 
third baroclinic mode at about 2.7 days is also highlighted 
in this figure and Figure 5. The inertial frequency for the 
mean latitude of Oahu is indicated with /. The 95% level of 
no significance is indicated with a dotted line. 

baroclinic/radial modes. However, given the success of 
mapping a real island to a cylindrical one, it is likely 
that a simple improvement of the model can yield rea- 
sonably good agreement with observations. That simple 
improvement is to include a radially-dependent, but 
azimuthally-invariant topography. The modal structures 
and frequencies can be obtained by resonance iteration, 
in a straight-forward adaptation of Brink's (1989) calcu- 
lation of stratified-topographic, seamount-trapped waves. 
Brink has recently modified his code for this purpose. 

The power spectra in Figure 5 clearly suggest the 
existence of narrow-band, super-inertial oscillations at 
frequencies between the diurnal and semi-diurnal tides 

at each of the islands. Luther (1985) concluded, on the 
basis of coherence between sea level stations (Honolulu 
and Moku o Loe) on opposite sides of Oahu, that the 
inter-tidal peaks at the Oahu stations were due to oscil- 
lations propagating around the island that were probably 
trapped. He suggested that Wunsch's (1972a) theory of 
pseudo-resonant trapped waves might explain the peaks, 
as it did for super-inertial peaks at Bermuda. Wunsch 
(1972a) studied the reflection of an internal plane wave 
from a cylindrical island and found that at certain fre- 
quencies nearshore amplification occurred; he called this 
amplification a pseudo-resonance since there is not a 
true trapping of the wave around the island, i.e., free 
internal gravity waves exist at all frequencies to carry 
the energy away from the island. Lumpkin (1995) has 
evaluated the full Wunsch (1972a) solution with param- 
eters appropriate for the Hawaiian Islands and has found 
that, for any reasonable choice of baroclinic and azimu- 
thal mode numbers (i.e., less than 25 for each), the 
pseudo-resonances always occur closer to the inertial 
frequency / than 1.25/, whereas the inter-tidal peaks in 
Figure 5 occur at approximately twice the inertial fre- 
quency (at about 17 hours period). [N.b., the phase lags 
found by Luther, 1985, suggest by Occam's razor an 
azimuthal mode number less than 4.] 

Frequency (cph) 

Figure 10. Azimuthal velocity spectra for 109-day long 
current records from the Keahole Pt. OTEC-1 site: 54 m 
(top), 363 m (middle) and 771 m (bottom). The 54 m (771 
m) spectrum has been displaced up (down) one decade for 
viewing convenience. The sub-inertial peaks in the 54 m 
spectrum are at 2.8, 2.2 and 1.6 days period. Peaks in the 
363 m spectrum are at 4.0, 2.8, 2.2 and 1.9 days period. 
The 771 m spectrum peaks at 4.4, 2.2 and 1.6 days period. 
The vertical dashed lines mark the inertial, diurnal and 
semi-diurnal periods. Figure taken from Lw    kin (1995). 



52 LUTHER 

Furthermore, if it is assumed that the inter-tidal 
waves that are showing up in the sea level observations 
at each island have the same horizontal phase speed, it 
is hard to imagine how they could produce nearly the 
same resonant frequency at islands like Kauai and 
Hawaii whose circumferences differ by a factor of three. 
(The resonant frequencies of the sub-inertial trapped 
waves after all - Wunsch, 1972a - are directly related to 
island size.) With similar periods of the super-inertial 
modes at each island, the differing island sizes also 
seem to rule out a refractively-trapped explanation, as 
might occur due to the sloping topography around the 
islands. However, if the oscillation is baroclinic it is 
hard to imagine that the topography doesn't play a role. 

A relationship has been sought between the frequen- 
cies of the inter-tidal oscillations and sum or difference 
frequencies of the prominent tidal and inertial frequen- 
cies. The inter-tidal oscillations have a strong seasonal 
dependence (e.g., Figure 11 and Luther, 1985) and so a 
connection with the tides is unlikely. Despite the sea- 
sonal dependence, no coherence with atmospheric vari- 
ables has been detected. Interannual dependence of the 
wave's amplitude rules out a connection to the sub- 
inertial trapped waves, since the super-inertial waves are 
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Figure 11. Variance of adjusted sea level from Hilo, 
1966-1974, obtained from a complex demodulation using a 
5-point Butterworth IIR filter with a cutoff frequency yield- 
ing the equivalent bandpasses of 52-76 h (top) & 17-19 h. 
Note the seasonal dependence (highest variance in winter) 
for both the sub-inertial and super-inertial motions, but note 
that they do not have the same interannual dependence of 
variance, and are therefore not likely to be dynamically 
linked to each other. Figure taken from Lumpkin (1995). 

found to be  stronger in years  when the sub-inertial 
waves are weakest and vice versa (Figure 11). 

For now, there are a couple of pieces of information 
suggesting a connection between the inter-tidal oscilla- 
tions and near-inertial oscillations. First, the most prom- 
inent inter-tidal spectral peaks (at Hilo, Hawaii, and 
Nawiliwili, Kauai; Figure 5) are at approximately half 
the inertial period. Second, a comparison by Lumpkin 
(1995) of cotemporal sea level data from Hilo and 
Kawaihae on opposite sides of the island of Hawaii 
yields the startling result (Figure 12) that Kawaihae 
displays a strong near-inertial peak (and Hilo doesn't) 
while Hilo shows a strong 2/ peak (and Kawaihae 
doesn't). Inter-tidal coherence between the two stations 
is high only at periods slightly longer than the Hilo 
peak. At Oahu at least, Luther (1985) showed that the 
inter-tidal auto-spectral peaks for stations on opposite 
sides of the island coincided with coherence amplitude 

Period 

Frequency (cph) 

Figure 12. Adjusted sea level spectra for Hilo (solid) and 
Kawaihae, both on the island of Hawaii, for the same 3.5 
year time period. The major tidal constituents have been 
analyzed and subtracted. Arrows indicate the theoretical 
periods of the first baroclinic, first azimuthal (center) and 
second baroclinic, first azimuthal (left) and second azimu- 
thal (right) ITW modes. The vertical dashed lines mark the 
inertial, diurnal and semi-diurnal periods. Both spectra have 
an impressive sub-inertial peak centered at 2.5 days period, 
corresponding to the gravest ITW mode. The Kawaihae 
record has a near-inertial (super-inertial) peak at 1.4 days 
period which is not present at Hilo; an inter-tidal peak in 
the Hilo spectrum reaches its maximum at -17.9 hours, but 
is not seen at Kawaihae. Figure from Lumpkin (1995). 
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peaks with significantly non-zero phase lags that indi- 
cated propagation around the island. 

The present state of our knowledge of the dynamics 
of the narrow-band, super-inertial oscillations observed 
at the Hawaiian Islands is quite unsatisfactory. Further- 
more, unlike the sub-inertial ITW which have been 
shown to be associated with significant currents, no 
such correspondence has yet been found for the super- 
inertial waves. They remain a curiosity, but whether 
they are more than that is not known. 

Forcing Mechanisms 

Ridge Waves 

The generation of bottom trapped oscillations, such as 
the seamount trapped waves and the ridge waves dis- 
cussed earlier, has been considered in some sense to be 
independent of the winds. For instance, regarding the 
forcing of seamount trapped waves, Brink (1990) has 
stated that it seems unlikely that such bottom-trapped 
features could be forced by surface wind stress effects. 
Rather, he suggests resonant excitation by ambient oce- 
anic currents. Of course, this sidesteps the issue of what 
causes the "ambient oceanic currents." In fact, at 
periods from the inertial to 10 days in which the JDFR 
wave resonance occurs, the atmosphere readily forces 
oceanic currents (e.g., Frankignoul and Müller, 1979; 
Müller and Frankignoul, 1981) that are evanescent from 
the sea surface (at the shorter periods in this band) or 
barotropic free waves (at the longer periods). The 
evanescent oscillations tend to have large vertical decay 
scales so that they have non-negligible velocities at the 
seafloor. Therefore, the "ambient oceanic currents" 
needed to force waves trapped over bottom topographic 
features could be directly forced by the fluctuating 
winds (as opposed to being the result of mean current 
instability, for instance). 

A potential flaw in this sequence of events is that the 
(barotropic or evanescent) currents forced by the 
fluctuating winds are not very energetic. Luther et al. 
(1991) and Chave et al. (1992) observed amplitudes of 
only 0(1 cm/s) for barotropic currents directly forced 
by the atmosphere in the mid-latitude North Pacific. But 
this simply emphasizes one of our points, that is, the 
existence of free waves trapped to topography, espe- 
cially if the dynamics impose a resonance, permits local 
near-topography enhancement of the initial forcing 
amplitude. Chapman (1989) and Haidvogel et al. (1993) 
find amplification factors up to 0(100) times the 
strength of the incident barotropic current in analytical 
and numerical models of forcing of waves trapped to 
isolated topographic features. 

Cannon et al. (1991) detected significant coherence 
between  local  wind stress and the 4-day oscillating 

currents over the southern JDFR. In conjunction with 
the winter-time enhancement of the energy in this band 
that they and Allen and Thomson (1993) report, direct 
atmospheric forcing of the JDFR waves appears certain. 

Island-Trapped Waves 

Direct forcing by the wind is clearly capable of excit- 
ing at least the gravest sub-inertial ITW. Figure 11 
exhibits a seasonal cycle in the energy of the gravest 
ITW mode around the island of Hawaii, which charac- 
teristic is generally interpreted as resulting from direct 
forcing by the atmosphere (Wunsch, 1972a; Hogg, 
1980). Furthermore, Figure 13 shows significant coher- 
ence amplitude between adjusted sea level and north 
wind stress at the period of the gravest ITW around the 
island of Hawaii. The phase associated with this high 
coherence rapidly changes nearly 180° at the ITW 
period as expected for a forced resonance. This type of 
evidence of excitation of resonant ITW modes was also 
found by Hogg (1980) at Bermuda. 

The simplest model of the wind forcing is to consider 
a   flat-topped,   cylindrical   island   with   an   imposed 

(days) 

95% 

Frequency (cph) 

Figure 13. Coherence amplitude and phase between 24 
years of adjusted sea level and north wind stress from Hilo. 
The period of the gravest sub-inertial ITW mode around the 
island of Hawaii is indicated by the short vertical lines in 
the amplitude and phase plots. Due to the highly significant 
coherence amplitude and the nearly 180° phase shift, the 
gravest ITW around Hawaii can be considered to be 
resonantly forced by the local wind field. 
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homogeneous, uni-directional, oscillating wind stress. 
Under these conditions it is easy to imagine that an 
azimuthal mode one ITW could be excited by the diver- 
gence of the wind-produced Ekman flux as it encounters 
the island. On one side of the island the horizontal flux 
divergence causes a set-down of the thermocline, and on 
the other side a set-up. Half a period later the set- 
down/set-up pattern is reversed, thus potentially rein- 
forcing an azimuthal mode 1 wave that has propagated 
halfway round the island. The dynamics of this scenario 
has been qualitatively confirmed by Lumpkin (1995) 
with a simple analytical model that examines the model 
response as the forcing frequency varies. The normal- 
ized energy spectrum from this model is presented in 
Figure 14. The figure clearly displays the lower frequen- 
cies and shorter offshore decay scales of successively 
higher baroclinic modes. All the modes have an azimu- 
thal wavenumber of 1, since the choice of forcing pro- 
jects only onto that mode. Model parameters were 
chosen so that the maximum sea level energy density 
and frequency bandwidth of the gravest ITW mode 
matches the sea level spectrum at Hilo in Figure 5. 
With this choice of parameters, the second mode (at 
co //o = .35) is a factor of 2 too energetic, while the 
energy of the mode 1 currents is actually under- 
predicted by a factor of 2 compared with the available 
moored current meter observations. 

Insofar as the model is unable to match observed 
spectral energy levels or explain other significant 
characteristics of the observations, such as the sea level 
vs. wind stress coherence functions at specific locations 
around the islands, successively more sophisticated 
models need to be investigated, first incorporating radial 
topographic variations following Brink's (1990) analysis 
of forced seamount-trapped waves, then modelling the 
near-island amplification of the winds due to island 
orography, and so on. It is also probable that at times a 
temporally-confined model of the wind-forcing (see the 
wind data in Figure 5) is the appropriate paradigm for 
the forcing function. Azimuthal variations in the topog- 
raphy (Figure 6) are also likely to contribute to the 
specific character of the ITW modes around each island. 

Despite the clear relationship between the gravest 
ITW mode around Hawaii Is. and the wind in Figure 
13, Luther (1985) has already noted that it is easy to 
find time periods, including whole years, when the sea 
level signatures of the ITW around many of the islands 
are not significantly coherent with the local winds. 
Luther (1985) has postulated two additional mechanisms 
of ITW forcing to account for this. First, due to the nar- 
rowness of the inter-island channels, it is possible that 
significant energy in an ITW mode around one island 
will leak (scatter, if you prefer) to a neighboring island, 
exciting a co-oscillation of that island's ITW modes. 
Lumpkin (1995) found, using time-dependent coherence 
functions (Figure 15), a number of time periods which 
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Figure 14. Total mean specific energy divided by mean 
background specific kinetic energy for the forced island- 
trapped wave model of Lumpkin (1995), with a dissipation 
time scale |jr' = f0 I 0.015 (=15.8 days). Frequencies from 
(0 //o = 0.1 to co //o = 1 (inertial) are shown; tick marks 
are at the inertial frequency and at the baroclinic eigenfre- 
quencies. The energy ratio is given for radial distance r 
ranging from the island radius a to 3a. Note that the trap- 
ping scale decreases for increasing baroclinic mode 
(decreasing frequency). Figure taken from Lumpkin (1995). 

appear to clearly show such co-excitation of the Maui 
group's gravest ITW by Hawaii's gravest ITW, while 
also showing time periods when the gravest Hawaii 
Island ITW was strong and the Maui Island ITW was 
weak (e.g., winter of 1974), and vice versa (summer-fall 
of 1971). In both the latter cases, there is no coherence 
between the islands indicating that the individual islands 
do have separate resonances, although just why the 
leakage should not always occur is not immediately 
apparent. A multiple regression analysis of the Hilo and 
Kahului sea levels and local winds has confirmed that 
leakage from the island of Hawaii to Maui is more 
important than local wind forcing at Maui, although the 
latter does occur. 

This is perhaps the first time such a co-oscillation 
phenomenon has been identified in the ocean. 
Quantification of this process, and the extent to which it 
occurs between other islands in the group is the subject 
of current research. This process may explain the 
existence of the 4-day oscillation all along the JDFR, 
despite the discontinuous nature of that ridge (Figure 1). 
That is, if the JDFR resonance is due to the excitation 
of waves that have zero along-ridge group velocity, the 
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Figure 15. Bottom two frames, running coherence ampli- 
tude and phase between band-passed adjusted sea level 
records from Kahului and Hilo for the 2.5 to 2.83 days 
period band. The complex demodulated variance in this 
band for each station is presented in the top two frames. 
The coherence was calculated from the phase-bearing 
band-passed signals and not from the variance envelopes. 
The horizontal line at coherence amplitude 0.75 indicates 
the 95% confidence level. Figure from Lumpkin (1995). 

similarity of the cross-ridge topographies for each small 
segment ensures that the resonant modes will all have 
the same frequencies. Then excitation of a resonant 
mode on one small ridge segment could result in co- 
oscillation of neighboring segments' resonant modes, 
and so on down the length of the JDFR. If one postu- 
lates a small amount of energy loss as this process 
occurs, the observation of south to north decay of 
energy in the 4-day oscillation discussed earlier could 
be explained. 

Continuing in a speculative vane, as appropriate for 
this workshop presentation, note that Luther (1985) 
found a reasonable correspondence between the 
incidence of large tsunamis and ITW excitation at 
Hawaii. He postulated that the divergence of the radia- 
tion stress associated with a tsunami as it shoals would 
be sufficient to produce a substantial set-up/set-down 
profile of the thermocline (as well as of the sea surface), 
since the thermocline is relatively shallow and is rela- 
tively close to shore due to the steepness of the island 
topography. After the passage of the tsunami, when the 
stress divergence which maintained the thermocline set- 
up/set-down is gone, the thermocline profile will try to 
relax to its former position and this relaxation process 
should generate ITW. Such a sequence of events could 
also occur when large ocean swells hit the islands to 

produce the huge surf for which Hawaii is famous (note 
the significant wave height in Figure 7). 

It is only in the last ten years that adequate time 
series of surface gravity wave energy have become 
available to permit a better testing of the gravity wave 
excitation mechanism. And there is certainly sufficient 
wind data now to be able to isolate those time periods 
when local wind forcing could not be responsible for 
the ITW generation. Investigations with these data are 
in progress. If the surface gravity wave forcing of ITW 
is found to actually occur it will represent a new addi- 
tion to the suite of mechanisms by which the atmo- 
sphere generates internal motions in the ocean. 

In summary, it is easy to imagine that at times a 
broad-scale oscillating wind (possibly rotating anti- 
cyclonically) is responsible for significant sub-inertial 
ITW excitation, while at other times short-lived storm 
events, or surface gravity wave set-up/set-down, contri- 
bute significantly to the wave excitation. And then at 
other times wave energy at one island may be due to 
leakage from ITW modes around a neighboring island. 

Final Remarks 

There is sufficient observational evidence to conclude 
that energetic, resonant, baroclinic oscillations exist 
trapped to islands and mid-ocean ridges. The lowest 
order dynamics of these waves is known, but significant 
details remain un-determined, such as the specific role 
of topography for the ITW and the cause of the reso- 
nance of the JDFR waves. For the super-inertial oscilla- 
tions at the Hawaiian Islands, even the lowest order 
dynamics is not known. 

Direct atmospheric forcing of both ITW and ridge 
waves has been demonstrated. The former is most likely 
via divergence of the Ekman transport as it impinges on 
the island, and the latter may involve a "tunnelling" of 
energy from the surface to the topography if the 
frequency-wavenumber characteristics of the forcing do 
not permit the generation of free open-ocean Rossby 
waves. Indirect atmospheric forcing is postulated for 
ridge waves through the intermediary of Rossby or Kel- 
vin waves, and for ITW through the intermediary of 
surface gravity waves. 

The existence of resonant ridge waves engenders the 
notion of a whole class of waves capable of propagating 
information long distances along the mid-ocean's ridges. 
Their extraction of energy from non-topographic Rossby 
or Kelvin waves may be a significant sink of energy 
that, for instance, is poorly modeled in GCM's. 

Both the ITW and ridge waves imply the existence of 
enhanced current amplitudes in the immediate vicinity 
of the topography. This variability may be important to 
oceanic mixing by intensifying boundary layer shears or 
improving the efficiency of removal of boundary-mixed 
water. The waves must certainly enhance the dispersal 
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of anthropogenic effluents at islands and hydrothermal 
effluents at mid-ocean ridges. In addition, both wave 
types may result in substantial rectified flows. 

The concept of energy leakage, or forcing of one 
resonant trapped oscillation by a resonant oscillation 
trapped to a neighboring topographic feature, has good 
support from the observations of ITW at the Hawaiian 

Islands, and may be responsible for the diffusion of 
energy down the JDFR. However, this problem has 
many non-intuitive aspects (e.g., Jansons and Johnson, 
1988; Hendershott, this volume). Most importantly, 
energy propagation through, for instance, an array of 
seamounts may not necessarily proceed in the straight- 
forward manner that previous discussions would sug- 
gest; that is, even if the seamounts have identical 
resonant frequencies, a resonance excited at one 
seamount need not spread equally to all the others, even 
if they are in close proximity. 
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Numerical Modeling of Time-Mean Flow at Isolated Seamounts 
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Abstract. A numerical G-coordinate ocean circulation model is used to investigate the strength and spatial 
structure of rectified flow at the flanks of a tall and steep isolated seamount. This study is closely related to and 
motivated by the studies of flow around Fieberling Guyot in the northeast Pacific; however, an idealized form of 
the topography, both smooth and with irregularities, is prescribed. A series of experiments with varying resolution 
and geometrical/environmental parameters is analyzed for mean flow generation. A regime is found where the 
presence of the rectified flow influences the wave amplification. The efficiency of the rectification mechanism is 
quantified for a wide range in parameter space. The along-isobath flow is generally bottom intensified, with its 
maximum very close to the seamount's summit. Finally, the model results are briefly compared to simple 
theoretical concepts for parametrization of flow-topography interaction effects. 

Introduction 

Isolated submarine topography is known to be the 
source of mesoscale variability in the ocean and therefore 
of great importance for the local and regional 
environment. Time-dependent forcing will generate 
transient density perturbations and flow intensifications at 
the seamount which propagate in form of "seamount 
trapped waves" clockwise (on the northern hemisphere) 
along closed depth contours. In particular, periodic 
forcing is capable of producing a strong wave response by 
resonant amplification. In addition to these time-variable 
phenomena, steady solutions of flow around isolated 
seamounts exist: both are due to the steady part of the 
forcing (uniform far field "climatological" flow) and to 
the nonlinear rectification processes at the seamount itself. 

There is a large body of literature on the influence of 
such isolated topography on the circulation in the ocean 
and atmosphere. Hogg (1980) gives a comprehensive 
overview of early theoretical studies. Recent observations 
(Eriksen, 1991; Brink, 1995), advanced analytical 
treatment of quasigeostrophic flow past obstacles (Fennel 
and Schmidt, 1991), and laboratory realizations of 
stratified seamount trapped waves (Codiga, 1993) are 
evidence for continued and even increased interest. 

The purpose of numerical modeling is to extend these 
prior studies to more realistic (fully non-linear) regimes. 
Progress with primitive equation modeling of steep and 
tall topography was made only very recently (Chapman 
and Haidvogel, 1992, 1993; Haidvogel et al., 1993). In 
idealized configurations smooth, symmetric seamounts in 
a fluid with linear or exponential stratification and forced 
by steady or diurnally varying barotropic ambient flow are 
studied. 

In an attempt to prepare us for models featuring real 
bathymetry, some of the following questions will be 
addressed: 

— the role of resolution; 

— the   role   of  individual   processes   (nonlinearity, 
stratification); and 

— the   role   of   topographic   scale   changes   and 
irregularities. 

Finally, the implications for parametrization of the 
mean flow rectification will be considered briefly. 

The   Spatial   Structure   of   Trapped   Flow 
at Seamounts 

Seamount Trapped Waves 

Theoretically, an infinite set of trapped waves exists at 
isolated seamounts, at discrete sub-inertial frequencies 
and azimuthal wavenumbers (Brink, 1989). In practice, 
only the gravest modes have been observed in reality and 
found in numerical models. The linear waves have one up- 
and one down-welling lobe; most of the flow crosses the 
seamount's summit and returns at the flanks (see Brink, 
1989). These waves were found to occur broadly in 
parameter space, both as a function of stratification and 
forcing frequency (Haidvogel et al., 1993). Trapped 
waves of near-diurnal frequency are of particular interest, 
because the forcing at the tidal periods K\ and 0\ are 
dominant in many parts of the open ocean. 

In previous studies on the influence of stratification, the 
Burger number 

S   =■ 
NH 

fR 
(la) 

has been used as a combined measure of stratification and 
rotation, where N is a vertical average Brunt-Väisälä 
frequency, H the maximum water depth, / the Coriolis 
parameter and R the horizontal scale of the seamount. 
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Acknowledging that seamount trapped waves are in 
most cases limited to the upper flanks of the topography, 
the choice of N and H as representative of the whole water 
column seems inappropriate. Consequently, for this study 
the Burger number was defined as the first internal Rossby 
radius of deformation rD at the seamount's summit relative 
to the seamount radius R, 

S=- 
R 

(lb) 

thus representing an integral measure of the stratification 
at the location of the maximum of the seamount trapped 
wave. We will look at values of S of order 1. For 
comparison, the Burger number range in the Haidvogel et 
al. (1993) study is 5 = 0 to 0.2. 

Time-Mean Flow 

The time-mean flow at isolated seamounts can reach 
O(10 cm s"1) (e.g., Brink, 1995 at Fieberling Guyot), about 
50% of the observed wave amplitude. This mean flow is 
thought to be the result of non-linear momentum and 
density advection of the seamount trapped wave. The 
strength of the mean circulation depends first and 
foremost on the amplitude of the generating wave, which 
in turn is a function of the environmental parameters (like 
stratification, rotation, forcing). The rectification 
efficiency (defined as mean flow amplitude relative to 
wave amplitude) found in numerical models (see 
Haidvogel et al., 1993) is a few tens of %, even at 
maximum resonance. 

The dynamical balance for the dominant azimuthal 
component of the mean flow consists of radially inward 
(upslope) directed horizontal eddy fluxes of momentum, 
compensated by radially outward (downslope) mean 
advection. Correspondingly, the net inward mean 
transport of heat is balanced by outward eddy heat fluxes. 
This leads to a cap of dense water on top of the 
seamounts. 

The time-mean secondary circulation is directed 
clockwise around the mean flow, featuring downwelling in 
the center of the vortex. 

Although substantial mean flows were found in 
previous idealized models of flow around seamounts, 
effects of the presence of the mean flow on the wave 
propagation and/or resonance were not observed: the 
rectified flow seemed to be linearly superimposed on the 
propagating wave. 

A Model of Flow at Fieberling Guyot 

Preliminary results are available from a high resolution 
simulation of the response to tidal forcing of the stratified, 
non-linear ocean at Fieberling Guyot (Beckmann and 
Haidvogel, 1994). Their numerical model is a variant of 
the semi-spectral primitive equation model SPEM 
(Haidvogel et al., 1991) with a terrain-following vertical 

("sigma") coordinate and a spectral approach in the 
vertical. 

The experimental configuration is very similar to the 
idealized studies of Haidvogel et al. (1993): the 
computational domain is a periodic /-plane channel. The 
horizontal grid is "stretched," focussing on the seamount; 
the grid spacing is less than 1000 m in the seamount 
vicinity. The topography was derived from a high 
resolution data set and linearly interpolated to the 
numerical grid. No further smoothing of the bottom relief 
was applied. 

The model is initialized with an exponential 
background stratification (fitted to measurements in the 
vicinity of Fieberling Guyot) and driven by a diurnal 
period barotropic current. The 1 cm s"1 amplitude and 
north-south orientation of the forcing are idealizations 
made from observations (Brink, 1995). A weak 
biharmonic lateral viscosity/diffusivity of 107 m s", linear 
bottom friction of 3104 m s"1 and a bottom-intensified 
vertical viscosity are used. 

The model is spun up for 25 days before the model 
fields are averaged over one wave period. Both the 
instantaneous and the time-mean flow fields show several 
of the observed characteristics: A trapped wave of 12.6 
cm s"1 amplitude is generated, setting up an anticyclonic 
time-mean flow at the upper flanks of the seamount of 6.2 
cm s"1 (rectification efficiency of about 50%). The depth 
dependent vertical viscosity was found to improve the 
vertical structure of the simulated mean flow. Other 
characteristic properties of the model results compare less 
favorably with the observations. The vertical phase 
gradients and the secondary circulation of the mean flow 
are not yet reproduced realistically. More detailed 
analyses of these and future model results will be 
published in a forthcoming paper. 

A comparison run with a smooth Gaussian fit to the 
topography give slightly smaller values of wave and mean 
flow. This is a first indication that topographic 
irregularities can alter the wave and mean flow response; 
it is unclear, though, whether this happens for purely 
geometric reasons (large scale asymmetries; locally 
steeper slopes) or by the presence of an additional 
rectification mechanism (form stress, see Haidvogel and 
Brink, 1986; Holloway et al., 1989) on these smaller 
scales. 

This simulation with realistic topography represents a 
major step beyond previous idealized studies and it is far 
from straightforward to interpret the results. The runs 
differ in various respects: The forcing amplitude is larger 
by a factor of 5, and we expect both larger absolute values 
of wave-related currents and a more intense mean flow. At 
the same time, the higher horizontal resolution (by a factor 
of 8) and the correspondingly smaller values of 
diffusivity/viscosity (by a factor of 2/100) might also 
increase the response of the waves. The more realistic 
(i.e.,   generally   stronger)   stratification   will   have   an 
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influence on the  vertical decay  scale of the trapped 
response. 

The real geometry is characterized by a smaller radius 
and steeper flanks than used in previous studies; their 
effects on wave amplification and mean flow generation 
has not been investigated. The geometric and 
environmental situation yields a Burger number regime 
that has never before been explored and simple 
extrapolations into this parameter range are not very well 
justified. Finally, the asymmetries of the real seamount 
and the background bottom roughness on various scales 
may contribute in various ways: Both a net damping effect 
on the waves and an enhancement of the mean flow via 
the form stress mechanism seem plausible. 

Parameter Studies 
In this section we try to answer the question "Which 

factors contribute in what way to the generation of mean 
flow at real seamounts?" In order to investigate these 
issues, a series of some 60 experiments were carried out, 
exploring the sensitivity to various environmental and 
geometrical seamount properties. 

The Model Configuration 

The model used here is the latest version of the terrain- 
following sigma coordinate model SPEM (Haidvogel et 
al. 1991), which is formulated with finite differences on a 
staggered vertical grid. The model employs a fourth order 
algorithm (McCalpin, 1994) to reduce the spurious flow 
generated by the truncation errors of the pressure gradient 
terms. Models of this type have now been repeatedly and 
successfully applied in configurations with large 
variations in depth (Chapman and Haidvogel, 1992, 1993; 
Haidvogel et al., 1993; Beckmann and Haidvogel, 1994). 

The basic shape of the seamount was chosen to 
accommodate several features of real seamounts, which 
are found to be tall and steep, and relatively flat on top. In 
particular, the seamount was not assumed Gaussian, but 
rather of a tanh-shape. As a consequence, the diameter 
and the slope can be prescribed separately. The functional 
form is 

with 

H = H0+AHt?mh((r-R0)/R) (2) 

H„ = 2500 m 
AH = 2000 m 
R„ = 20000 m 
R = 8000 m 

The resulting maximum slope fV//)|mat = 25 % is close to 
observed gradients. 

This seamount was placed in the center of the periodic 
channel domain of 256 x 256 km. To account for the 
expected bottom trapped nature of both the seamount 
trapped wave and the mean flow, the vertical grid is 

stretched quadratically towards the bottom, as depicted in 
Figure 1. In comparison to an equidistant discretization 
this improves the resolution at the lower boundary of the 
model dramatically: the minimum grid spacing is 3.5 m at 
the top of the seamount and 35 m in the deep ocean; the 
maximum grid spacing just below the surface varies 
between 80 and 800 m. The horizontal resolution was 
chosen to be 2 km uniformly across the model domain; the 
Coriolis parameter of /„ = 1.03TO"4 s"1 corresponds to 
45°N. 

VERTICAL GRID ARRANGEMENT 

-4500 
0  5  10 15 20 25 30 35 40 45 50 55 60 65 

r [km] 

Figure 1. Coordinate lines form the quadratically stretched 
vertical grid as a function of radial distance from the seamount's 
center. 

An exponential initial stratification of realistic strength 
was prescribed as 

-(z/1000m) 
p = 28.0- 2.5 e (3) 

with a corresponding Rossby radius of 9 km over the 
seamount's summit and 36 km in deep water, typical for 
mid-latitudes in the North Pacific. The Burger number for 
this experiment is 

5=^ = 0.5 
R 

(4) 

(for comparison, S* = 11). 
Similar to previous idealized studies,  the model  is 

forced with diurnal barotropic tidal forcing of the form 
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uf = U0 tanh(f / 37) sin(2ro / T) (5) 

with U0 = 1 cm s"1 and 7= 1 day. 
The viscous and diffusive terms are of particular 

importance for the amplification and rectification process. 
A standard linear bottom friction of rb =3-10~Hms ' was 
chosen in addition to a weak background biharmonic 
lateral viscosity/diffusivity vuv=vp=10"m"s '. The 
experiments were run for 20 days with a time step of 
43.2 s; the last day was averaged to obtain the time-mean 
fields. 

The Central Experiment 

The central experiment serves as the standard solution 
and is used to illustrate the spatial structure of the wave 
and the mean flow. Table 1 lists the maximum point-wise 
velocities for the central experiment and, for comparison, 
identical experiments with linearized dynamics or 
homogeneous fluid. 

Table   1.   Maximum   point-wise   velocities   for   the   central 
experiment and two additional runs with different physics. 

central linearized      homogeneous 
reference       dynamics fluid 

total 
VWAVE 
VMEAN 
ratio 

55.61 28.87 - 
31.37 0.35 - 
56% 1.2% - 

4.73 4.67 14.61 
1.68 0.06 0.90 
36% 1.2% 6% 

barotropic 
YWAVE 
v

'MEAN 
ratio 

The wave and mean flow amplitudes are quite large, 
and although wave amplifications of O(50) have been 
reported before, a mean flow of this strength has not been 
found in previous numerical models. It is interesting to 
note that the barotropic part is only a small fraction (9 and 
6 %) of the wave and mean flow fields, respectively. 

Figure 2 shows a snapshot of the density perturbation at 
various depths. At the upper flanks of the seamount (600 
and 700 m) the first azimuthal mode seamount trapped 
wave is clearly visible. Right above the seamount's 
summit the additional cap of denser water dominates the 
density perturbation. The highly bottom trapped nature of 
both the wave and the mean flow becomes clear at the 400 

m level, where only a weak indication of the wave is 
visible. 

The mean flow in Figure 3 shows a similar structure as 
found in Haidvogel et al. (1993), but with much more 
pronounced bottom trapping. The mean flow is along 
isobaths for the most part, but even the secondary 
circulation in the radial-vertical plane is quite substantial: 
a radially outward current of up to 7 cm s"1 at the bottom 
returns in a thin layer of fluid above. The circulation is 
closed by downwelling in the center of the seamount of up 
to 100 m/day and a somewhat weaker upwelling motion 
above the upper flanks. 

Unlike in the studies by Haidvogel et al. (1993), where 
the wave amplitude differed only insignificantly between 
linearized and non-linear dynamics (cf. their experiments 
IB and 3B), the rectification process is strong enough to 
have a significant feed-back on the wave. This can be 
deduced from the wave amplitude of the linearized 
experiment, which is smaller by a factor of 2. There is a 
significant amount of vorticity q in the time-mean Taylor 
cap, exceeding -/at the top. We are in a regime where the 
existing mean flow reduces the ambient vorticity / + q for 
the wave in a shallow layer above the seamount and 
thereby leads to an increased wave response. 

The weak residual time-mean flow for the linearized 
dynamics can be attributed to the weak remaining trend in 
the forcing and the remnants of transients from the 
initialization process. 

Finally, it should be noted that removing the 
stratification results in much weaker point-wise velocities; 
the barotropic response, however, is enhanced. 

Resolution Dependence 

The issue of horizontal resolution and its influence on 
the modeling of seamount trapped waves was previously 
investigated in a more technical paper by Beckmann and 
Haidvogel (1993). It is obvious that the spatial scales set 
by the seamount need to be resolved properly, but how 
stringent are these constraints? 

The combination of the terrain-following model 
concept and the stretched vertical coordinate gives an 
exceptionally good vertical resolution of the wave and 
mean flow fields. It is unknown, however, how much 
horizontal resolution is needed for convergence of the 
solution and whether there is significant degradation of 
the result for less resolution. For this reason, a first series 
of experiments varies the horizontal resolution without 
changing any other model parameter: identical dissipation 
and   time   step   are   used   for   all   five   experiments. 
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Figure 2. Snapshot of the horizontal structure of the density perturbation for seamount trapped wave in the central experiment: (a) 
400 m; (b) 500 m; (c) 600 m; and (d) 700 m. Only the inner quarter of the domain is shown. 

Figure 4 summarizes the results: while the wave 
response and mean flow generation increase with 
increasing resolution down to about 2 km grid spacing, 
further increase results in slightly reduced wave 
amplitudes; the rectified flow seems to have reached 
convergence. 

An explanation involves the fact that the rectification 
process requires a finite amount of friction to break the 
symmetry of the seamount trapped wave. Too much 
friction, however, will damp the wave and reduce the 
rectified   flow.   The   non-uniform   convergence   is   an 

indication that the implicit diffusion/viscosity in the 
numerical model still dominates over the explicitly 
prescribed values for 4, 3 and 2 km resolution but is 
below that level for 1.5 and 1 km resolutions. 

It should be noted that the results for the least resolving 
case differ from all others by the apparent existence of a 
higher vertical mode, a circulation pattern which might be 
used as evidence for insufficient numerical resolution. 



62 

RADIAL VELOCITY 

BECKMANN 

AZIMUTHAL  VELOCITY 
0. 

CONTOUR FROM -.0675 TO  .0725 BY   .005 

-32. X(km) 32. 

500. 

Z(m) 

CONTOUR FROM -.2875 TO   .3125 BY   .025 

-32.      X(km) 32. 

■1500. 

VERTICAL VELOCITY DENSITY PERTURBATION 

CONTOUR FROM -.00125 TO .00025 BY .0001 

-32. X(km) 32. 

-1500. 

Z(m: 

CONTOUR FROM  -.0075 TO   .0725  BY   .005 

-32. X(km) 32. 

500. 

Figure 3. Spatial structure of the time-mean flow in the central experiment: (a) radial velocity; (b) azimuthal velocity; (c) vertical 
velocity; and (d) density perturbation. Shown is the radial-vertical plane focussing on the upper 1500 m of the inner quarter of the 
model domain. 

Variations of Shape and Topographic Irregularities 

While changes of the fractional seamount height and 
functional form had been considered in previous studies 
(e.g., Chapman and Haidvogel, 1992), there is no 
systematic investigation of seamount radius and slope, 
azimuthal asymmetries and small-scale bottom roughness. 

Examples from these three categories of topographic 
variations are considered in this study. The basic form of 
the topographic obstacle (2) was modified in the following 
way: 

R0 = Ri+R2sm(nd + Q0) (6) 

Radial Shape of the Seamount 

In this class of variations, the influence of seamount 
diameter and slope is investigated. The radius of the 
seamount (7?;) was varied between 15 and 25 km (Fig. 5). 
The maximum resonance was found for a radius of 20 km, 
this is for a Burger number of S = rD / R0 = 0.5, which 
coincides with the central case reported in the previous 
section. 
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WAVE AND MEAN FLOW WAVE AND MEAN FLOW 
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Figure 4. Wave amplification (solid line) and mean flow 
rectification (dashed line) as a function of horizontal resolution: 
the maximum point-wise velocity. 

The rectified mean flow is directly proportional to the 
wave amplitude for most of the parameter space, except 
for very wide seamounts, where the lobes of the seamount 
trapped wave are separated and cannot interact 
effectively. Very thin seamounts, on the other hand, seem 
to have a smaller perturbing effect on the barotropic tidal 
flow, thus resulting in generally weaker resonance. 

In a next step, the slope of the seamount (R2) was 
varied between 6 and 12 km (Fig. 6). This represents a 
change in maximum slope from 16.7 to 33.3%. Again, 
there is a maximum, in this case at around 9 km, where 
maximum resonance occurs. Steeper slopes suppress the 
wave amplitude and essentially eliminate the mean flow 
generation. 
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Figure 6. As Fig. 4, but as a function of seamount slope R2. 

Azimuthal Asymmetries 

Variations in the azimuthal direction were added in the 
form of sinusoidal changes in radius of varying mode 
number. A first series of experiments investigates the 
effect of amplitude changes for mode 2 asymmetries; 
subsequently, higher order perturbations were investigated 
and possible effects of the angle of attack for an 
asymmetric seamount were tested. 

The introduction of an azimuthal asymmetry with n = 2 
generally reduces the wave and mean flow response (Fig. 
7). Obviously, a symmetric seamount has to be regarded 

WAVE AND MEAN FLOW 
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Figure 5. As Fig. 4, but as a function of seamount radius Rt 

Figure 7. As Fig. 4, but as a function of the amplitude of the mode 
2 asymmetry. 



64 BECKMANN 

WAVE AND MEAN FLOW 
■ ; 

35 : 

_ 30 ^ 
IS) 

^25 
^ * 

20 o *         ¥    * * 
V5 
> 
10 : 

O 0 5 °   o   o 

WAVE AND MEAN FLOW 

Figure 8. As Fig. 4, but as a function of azimuthal mode number 
n. Solutions exist only at discrete points: asterisks denote the wave 
amplification, circles the mean flow rectification. 

as the optimal geometry for resonant amplification and 
rectification. Azimuthal pressure variations of the wave 
correlated with the topographic asymmetries do not 
contribute enough to compensate the reduction of wave 
amplification due to the geometrical changes. 

Higher order azimuthal variations (Fig. 8) tend to 
decorrelate the non-linear interaction between the wave 
lobes even more. The rectification efficiency drops from 
50% to less than 25%. 

The orientation of the asymmetric seamount with 
respect to the main axis of the forcing was varied between 
0O = 0° and 180° (Fig. 9). This "angle of attack" was 
found to be of only minor importance for the trapped flow 
response: 10% difference in the wave amplitude is found, 
with a maximum at 0O = 0° , when the mean flow hits the 
obstacle on the larger flanks in prograde direction. 

Bottom Roughness 

Lastly, the smooth seamount topography was modified 
by adding a random bottom roughness of varying rms- 
value. The random perturbations  are weighted by the 
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Figure 9. As Fig. 4, but as a function of seamount orientation 9„ 
relative to the forcing flow. 

deviation from maximum water depth, thus being largest 
on top of the seamount and essentially zero in the deep 
ocean away from the obstacle. This way, even relatively 
small rms-values should have an influence on the resonant 
and rectified flow. The general tendency of added bottom 
roughness is to act as a sink of wave energy (Fig. 10). 
Similar to the azimuthal asymmetries, bottom roughness 
destroys the systematic non-linear interaction of the wave 
and thus reduces both the amplification and rectification. 

Latitudinal Dependence 

In addition to the changes in seamount geometry the 
Coriolis parameter / was varied between 30°N and 65°N 
to obtain an idea of the sensitivity to environmental 
parameters. 

The dependence on latitude was found to be immense: 
Figure 11 covers the latitudinal range between 30°N, the 
critical latitude for trapped diurnal waves, and 65°N and 
shows large differences in the maximum point-wise 
velocities across the parameter range. As expected from 
the studies of Haidvogel et al. (1993), a larger Coriolis 
parameter (reducing the Burger number) gives much 
larger response at high latitudes. It is noteworthy, though, 
that a variation of/by a factor smaller than 2 can account 
for a change in amplification by a factor of 6. 

Implications for Parametrizations 
Arguments from statistical mechanics can be used to 

derive a simplified form of the systematic flow along 
topographic depth contours caused by interaction between 
fluctuating flow and topographic variations. A 
parametrization of this "fifth force" for coarse resolution 
models was proposed by Holloway (1992): the lateral 
viscous terms should be modified to drive the barotropic 
part of the horizontal flow field towards a state of cyclonic 
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Figure 11. As Fig. 4, but as a function of latitude. 

circulation around ocean basins. It was shown that this 
approach can give results closer to observations (Eby and 
Holloway, 1994). 

In principle, the time-mean flow around a seamount is 
based on the same physical process. It is therefore obvious 
to ask whether we can learn from these experiments about 
the structure of mean flows and how to parameterize 
them? 

According to Holloway (1992) the barotropic time- 
mean "climatological" velocities can be derived from a 
streamfunction of the form 

V  =-IffH (7) 

As a result, the azimuthal component of the mean flow 
would be approximated by 

V   =■ Vr -fL> 
H 

(8) 

Figure 12 compares the azimuthal time-mean flow at 
the bottom and its barotropic part from the central 
experiment with the V* from theory. 

First of all it is obvious that the barotropic part 
represents only a small portion of the flow field; the 
rectified response is mainly baroclinic. But even a look at 
the barotropic component shows significant differences: 
while V* has its maximum at the location of the maximum 
Hr / H, the model concentrates its time-mean momentum 
at a smaller radius. As a consequence, maximum 
velocities and transports do not match. If L - 1200 m is 
chosen (as for Fig. 12), the velocities are comparable, but 
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Figure 12. Azimuthal time-mean velocities as a function of radial 
distance from the seamount center: total bottom flow, barotropic 
part, and the climatological velocity from eq. (8) with L = 1200 m. 

the transport is too large by a factor of 4. If this is 
compensated by the choice of a smaller L, the resulting 
velocities are too small. 

It is not clear whether or not we should expect the mean 
flow structure at seamounts to be fundamentally different 
from the form stress rectified flow at straight continental 
slopes, due to the geometric peculiarity of the radially 
symmetric topography. Further detailed studies are 
needed. 

Similarly, attempts to introduce vertical structure in the 
parametrization need more attention; they would have to 
take into account a corresponding density perturbation 

K=-Wr (9) 
but this extension is not straightforward. 

Summary and Conclusions 

Geometrical and environmental parameters are varied 
in a series of numerical experiments featuring a tall, steep 
and isolated seamount forced by diurnal barotropic flow. 
Several classes of topographic changes and irregularities 
are investigated for their influence on wave amplification 
and mean flow generation. Changes of the radial shape of 
the seamount are found to be the most crucial in 
determining the actual amplitude of the trapped flow. All 
azimuthal irregularities tend to reduce the wave response 
and the amount of rectification. 
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The results of Haidvogel et al. (1993) are found to be 
robust through the parameter space. The instantaneous 
near seamount response is dominated by the first 
azimuthal mode seamount trapped wave; higher modes 
could not be detected. However, a regime was found in 
which the vorticity of the mean flow modified the local 
environment of the wave enough to cause an enhancement 
of the wave amplitude through non-linear feed-back. 

Returning to the comparison of the real Fieberling 
Guyot topography and its smooth Gaussian fit we have to 
conclude that the slightly increased flow amplitudes for 
the real Fieberling Guyot bathymetry are likely to be the 
joint effect of steeper slopes that increase and 
asymmetries combined with bottom roughness that 

decrease the response. 
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Rossby Waves over a Lattice of Different Seamounts 

M. C. Hendershott 
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Abstract. Topographic (ß=0) Rossby waves over an infinite rectangular lattice of identical seamounts have the form of plane waves 
propagating in frequency bands close to the natural frequencies of the topographic Rossby waves trapped around one seamount in 
isolation (Rhines). When the height of the seamounts varies randomly and the seamounts are separated by more than a few seamount 
radii, then the topographic Rossby wave field is described by a model first introduced by Anderson in another context. In this model, 
randomness in seamount height converts the extended plane waves into localized modes whose horizontal scale of energy trapping 
decreases with increasing disorder in seamount height. The numerical results of Mackinnon and Kramer are used to quantify this 
relationship. 

1. Introduction 

The ability of Rossby waves to transmit low frequency 
energy over long distances in the ocean is important directly 
or implicitly in most quasianalytical theories of the large 
scale circulation as well as in the interpretation of results 
obtained from numerical models of ocean circulation. Our 
qualitative ideas about such waves have grown largely out of 
analytical or quasianalytical solutions of the linearized 
shallow water equations or of the quasigeostrophic equations 
over ocean bottom relief that is either flat or has some very 
simple form which makes analysis feasible. But basin scale 
modes and much smaller scale topographic modes can easily 
have very similar frequencies (Miller, 1986). This 
observation raises the question of whether and/or when 
Rossby modes computed over smoothed relief would have 
recognizable counterparts over realistic relief. 

An important aspect of this question has been addressed 
for surface gravity waves by Devillard et al. (1989), who 
found that for bottom relief and waves varying in only one 
direction, any amount of random variation in the underlying 
bottom relief changed the travelling waves into standing 
modes spatially localized over a horizontal scale that became 
ever larger as the random variation of the relief was 
decreased. The present calculation establishes a similar result 
for two dimensional topographic Rossby waves. 

Even when ß=0, Rhines (1970) has shown that energy 
transmission over unlimited distances via traveling 
topographic Rossby waves can occur if the bottom relief is 
periodic in space. It is shown below that if a collection of 
identical seamounts arrayed on a periodic lattice and 
separated by more than a few seamount radii is randomly 
perturbed in seamount height, then these traveling 
topographic Rossby waves extending over the entire 
horizontal plane are changed into spatially standing modes 
localized over a horizontal scale that becomes ever smaller as 

the random variation of the relief is increased. This is 
accomplished by transforming the Rossby wave problem into 
a form previously investigated by Anderson (1958) in another 
context, and then making use of quantitative numerical 
studies of the horizontal scale of localization for this model 
(MacKinnon and Kramer, 1983). The salient results are 
summarized in Figure (1). 

2. Topographic Rossby waves over a Lattice of 
Seamounts 

Over a single isolated seamount of radius ä, that is 
centered at r, =(x.,y) and whose relief D(x,y)=p (l-h(x,y)) 
varies only for |r-r,|<a; so that 

h(x,y) 
Pf\r-r,\) \r-ri\<ä, 

jr-^l >d, 
(2.1) 

the streamfunction v|;,A. describing purely topographic (ß=0) 
seamount oscillations with natural frequency alK satisfies 

%-v\.+ JWlKJ0P,) = 0 (2.2) 

The subscript / indexes the seamount (in preparation for the 
case of many seamounts) while the subscript K 
orders modes over the seamount. From (2.2) the sign of a,K 

changes  with  the  sign  of the  relief;  a,K < 0  for hills. 

In cylindrical coordinates r,0 centered at r,, the 
eigenfunctions over circularly symmetric relief have the 
separated form 

67 
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* 

e>""ylkir) r<a. 

e'"e y^ä^/r)"        r>d, 
(2.3) 

n= 1,2,3 .... The index K is usually a pair of integers indexing 
variation of i|fKin the 0,r directions. Thus over the particular 
relief 

Kx,y) 
h0(l-(r/d,f) r<d, 

r>a, (2.4) 

the eigenfunctions i|;K are of the form 

* 

Ae^Uv) r<a, 

Aein^ Jl^ä^lrf r>ät 
(2.5) 

in which A is a constant and the eigenfrequencies ax are 
given by 

A \2 

(2.6) 

The index K in (2.3) is the pair n,m in (2.6). Seamount 
oscillations over the tophat relief 

h(x,y) = 
r<ä, 

r>ä, 

(2.7) 

will be found useful because their simplicity facilitates 
estimation of the coupling between seamounts; away from 
the seamount their dependance on r,0 is the same as in the 
general case (2.3). 

Over    isolated    seamount    /,    of    arbitrary    shape, 
eigenfunctions i|fK satisfy the orthogonality relationships 

VyOfixJA) = ~ioiK V^/Vv^ = -'°A (2.10) 

^ILJ^IKJOPI) = -iotK V^-Vt^ = 0 

in which the overbar here and everafter indicates integration 
over the entire horizontal plane. The constant A in (2.8) has 
been chosen in accord with (2.10). 

For every eigenfunction tyIK with frequency aK there is 
another eigenfunction t|%* with eigenfrequency -%. A given 
eigensolution and its complex conjugate are 
indistinguishable when free but respond differently to 
forcing. This is most obvious in the case where clockwise 
rotation of phases about a hill necessarily forces 
counterclockwise rotation of phases about any neighboring 
hill, a sense of rotation of phases opposite to that associated 
with free seamount oscillations at the neighboring hill. 

Now let the relief be an ensemble of distinct seamounts: 

Kx,y)  = j;Ps(\r-rs\) (2.11) 

Expand the total streamfunction i|/(x,y,t) over this relief in 
individual seamount eigenfunctions: 

WM) = £ WW^) + baffWUxy)] (2.12) 
IK 

are of the form 

einQ(rlä,)n r<ät,     A=(4miy 
x|/ = 

e'"e(dA)" r>ä,,     «=1,2,3... 

1/2 

The total energy E is 

(2.8)      2E = pVi|r-Vi|r * = p £ a^ aK Vi|r^- Vi|;K + . 
K,nM 

(2.13) 

and are degenerate in that all modes of angular wavenumber      in which p is the mass per unit surface area of the fluid layer. 
n have the same radial variation, and the eigenfrequency 

'IK -/oV2 (2.9) 

With the normalization of (2.10), %$ and |bK
2| are the 

energies associated with tyK and t|/K* in isolation. Insert the 
expansion (2.12) into the governing equation 

dV2pdt + J($,f0h)=0 (2.14) 

is the same for all the modes. Nonetheless the tophat modes 
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for linearized nondivergent quasigeostrophic flow over relief 
h given by (2.11) to obtain 

IK 
E ^IK^iK  +  K^'lK  + (2.15) 

Multiplying (2.15) by i|/0M and \]f0M * separately and then 
integrating the resulting equations over the horizontal plane 
yields the following coupled ode's for the amplitudes aK and 

VilW- Vilw am + £ £ [Vi^ • VqiK] d 
K   1*0 

IK 

+ vVw ■ vVw V+E E Wi/ • vtt V = 
A: i*o 

(Ax»     +l^D00s    >a0M+L,l^yD010     +D0U    \alK 
s*0 K   1*0 

♦ EEEPorH^^r-E^ofl^ 
A: I*O s*o 5*0 

+EE (^r^oV*)V-+EE E iC>» 
AT   ;*0 AT   7*0 stO,/ 

tV^OM • VlfoJ  ä0M + E E V1W • V^ <*ff 
A: /*O 

(2.16) 

(2.17) 

+V1W •vlC/ 6OM 
+ E E fv4W • vtt *«•    = 

A: I*O 

\PoO0   + L Axk ] a0M + L Z, (D0I0   + D0ll >aK 
s*0 K   1*0 

+E E E ÄH* + vZ'+ E *»«, 
K   1-0 s*0,l s»0 

+E E Ä* +JO*K + E E E ÄX 

In (2.16) and (2.17) terms refering to the seamount labeled 
0 have been isolated, and the notation 

Do,s     =    V'oMWK.tfs) 
(2.18) 

has been introduced. In (2.16) and (2.17) only, the square 
brackets [] enclose terms which are found upon detailed 
calculation to vanish. The remaining nonzero terms may be 
grouped as follows: 

M*M 

^0M~ 1^ 1U00s 
s=0 

(2.19) 

M*K 

<Po/    = 2_   ' D0 Is 
s*0,l 

>MK 

A7 = vi|/0M-vv 

and we have the particular values 

(2.20) 

(2.21) 

D0
Moo=-*oM^oM-^oM=l> 

Dn„     + Dn#n     = -i(oOM-o,K)(Aol ) 

(2.22) 

'on 'o/o 

^00   ~ u' ^ooo -io 
0M 

S0M in (2.19) is a small correction to the eigenfrequency 
a0M of seamount oscillation %u over seamount 0 due to the 
presence of all the other seamounts. (J),,,1^ in (2.20) is the 
interaction between eigensolution pairs at sites 0 and / 
because of their overlap with all other seamounts. A^ in 
(2.21) is the direct interaction between complex conjugate 
eigensolution pairs at sites 0 and /. 

With the introduction of (2.19) - (2.22), (2.16) - (2.17) 
become 

'«aw + 'E E (Ao/ )* K = (°OM 
+ SQU) a, 

K   1*0 
0M 

MK-. 

(2.23) 

+EE«C)%+ EE(°OM-%)(0** IK 
K   1*0 K   1*0 

and 

'KM 
+ 'E E (O < = -(°OM 

+ Sou) *. 0M 

(2.24) 

-EE(Cr bK - EE(<w-°*xO», K 
K   1*0 

3. Topographic Rossby waves over a Lattice of 
Randomly Differing Seamounts 

Rhines (1970) has shown that if all the seamounts are 
identical and they are arrayed in a rectangular lattice, then 
even in the absence of ß, energy initially in topographic 
Rossby waves can propagate indefinitely. If the distance R 
between seamounts somewhat exceeds the seamount radius 
ä, then detailed calculations (some of which are shown 
subsequently) show that the correction and coupling terms 
(2.19)-(2.21) decay as positive powers of a/R. If we label 
lattice positions by x,y (in units of R), then the solutions 
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found by Rhines (1970) have the form 

_ _   p Kvx + vy - a((i,v)) 
V 
a(u,v) - o0M[ 1 + 0(alRfn*( cos(ux) +cos(vy))] 

(3.1) 

where n is the angular order of an individual seamount 
oscillation with frequency a0M. Plane waves thus propagate 
within frequency bands that are centered about the 
frequencies a0M of isolated seamount oscillations and have 
widths the order of o0AXa/R)2n+1. 

The question now to be addressed is 'what happens to 
these propagating topographic modes when the seamounts 
are of slightly differing heights h,?' We thus consider a 
periodic lattice of seamounts whose individual seamount 
oscillation frequencies are randomly distributed about a 
central value o„. The width of this distribution will be 
supposed to be small relative to the size of a». For motions 
at a fixed frequency w, (2.23)-(2.24) may be compactly 
written as 

o    0 

0   -a. 

~S   0 

0   S. 

4>   o ' 

o  -<|>* 

0       oA*-A*o 

Ao-oA        0 

/   A* 

A   I 

(3.2) 

in which o is the diagonal matrix of individual site 
eigenfrequencies oou, and S, $, and A are matrices whose 
elements are given by (2.19)-(2.21). 

As long as the disorder in seamount height is sufficiently 
small that individual seamount oscillation frequencies 
associated with different angular or radial orders do not 
overlap, we may retain but one mode per site (typically the 
mode having the smallest angular wavenumber n=T and 
consequently the greatest frequency). The elements of S, (j>, 
and A may be shown to decay as positive powers of (a/R), so 
that (3.2) may be simplified by left multiplication by the 
factor 

I  A* 

A   / 

-l 
(1 -A-A)"1     -(i-A'A)-^* 

-A*A)-'A     (1-A'A)-1 

The res ultis 

= 
(1+A*A)      -A* 

-A      (1+A*A) 

(3-3) 

(o+S+fy+A'oA) oA* 

-oA -(o+S+<|>*+AoA*) 
(3.4) 

Here, terms such as AA*A have been neglected relative to 
terms such as AA*, and terms such as A*S and A <t> have been 
neglected relative to terms such as A o. 

Now we consider motions at a frequency w that is close to 
the natural frequencies o„ of individual seamounts in the 
ensemble (the single subscript now indexes seamounts). The 
dominant terms of the diagonal elements of (3.3) are thus the 
diagonal matrix a, so that the linear equations for a may be 
close to resonance but those for b are far from resonance. 
Consequently we may take 

b = -(o)/+o)_1oAa 

Hence (3.3) finally becomes 

w/cr = (o+S)a + Va 

V = (<J)+A*oA-aA*(co/+a)_1oA) 

- (4>+a,A*A/2) 

(3.5) 

(3.6) 

in which a» denotes the average of the individual free 
seamount oscillation frequencies o0. The terms neglected in 
(3.5) would contribute minor modifications to V and S in 
(3.6). 

We now evaluate the elements of (f) and of A A appearing 
in (3.6). We have 

+« = E »^(♦;./A) = E -»W(*/>o*) 
tfOJ srO.I 

" E (-°/Xd;) 

(3.7) 

(*,-*/ - ><y,-yi>f <-x,-*o+ >(y,-yö)f 

and 

A0* = Vi|/0V^; = -O'/oX WM 
(3.8) 

<ifo^/i,J(^J,^ = -ä0äf (x0-x; + ;'O0 -y)) 

The evaluation of V in (3.6) thus requires evaluation of the 
sum 

U**> £ ,yfVl (x-x0-i(y-y0)y (x-x,-i(y-y)Y 
(3.9) 

This will be illustrated for the particular case yo=yi=0. It is 
convenient to write (3.9) as 
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s =R~*S =R~* y^  
°' ^ n,m . v,0;|i,0 (« - V -/ff/)2   (« ~U +/M)

2 

Note that 

(3.10) 

VM    rfv <tfv      (n-v-i'm) n~\i+im) 

dv dv 

v-\i-2im 

m2A (v-\if + 4m: 
V(>i-v)2+m2    (n-n)2+» 

\(n-v)2+m2     («-n)2+m2A v-n+2imJ 

(3.11) 

Since the summation indices exclude n,m   - u,0; u,0, the 
very last sum in (3.11) may be written as 

'f__2''"    ){Y        *       - ' l- ) (3- 
'I v-(i + 2i"m/\„H„  (n~\if+m2    m2    (v-^)2+m2/ 

12) 

In this form it is clear that this sum exactly equals the next to 
last sum in (3.11) so that the last two terms of (3.11) cancel. 
The imaginary part of the summand in first two sums in 
(3.11) is odd in m and hence the corresponding sum vanishes. 
The remaining summands are odd in n-v and n-u. Since the 
corresponding sums exclude n,m = v,0; u,0, (3.11) may 
finally be written as 

d   d 12 (3.13) 
dv d\x (n-v)2     (n-v)4 

so that the sum (3.10) is 

<Jm _ ' 
12 12 

tf4(u-v)4     (x0-x,f 
(3.14) 

On account of the rapid decrease of S01 with site separation, 
we truncate the sum over all seamounts that is implicit in the 
matrix equation (3.6) to a sum over nearest geographical 
neighboring sites, and so finally obtain an approximate 
version of (3.6); 

V=6at(a/R)4 

(3.15) 

now notated in an obvious geographical manner in which site 
eis east of site o .... 

4. The Anderson Model 

(3.15) has the form of model employed by Anderson 
(1958) to discuss the nature of single electron wavefunctions 
in a spatially random potential. In the numerical study of 
MacKinnon and Kramer (1983) that model is studied in the 
form 

(co-a>0 = (p0+S0-ot)a0 

+ V(ae+aw+an+as) 
(4.1) 

The effective individual site frequencies a0+S0 are supposed 
randomly distributed over the range o*±Aa. The interaction 
potential V is taken constant. It is convenient to discuss the 
results in terms of a disorder parameter W defined by 

W = Ao/V = 
Aa 1 

o,  6(alKf 
(4.2) 

Over a given relief, the topographic Rossby normal modes 
and their natural frequencies could in principle be found by 
solving the eigenvalue problem (3.6) or its approximate form 
(4.1). But we wish to study the properties of normal modes 
over an ensemble of reliefs characterized by Aa or, 
equivalently, W. What can be done is most simply illustrated 
for the case of a one dimensional chain of seamounts labeled 
i=l,2,..., for which (4.1) becomes 

(co-oja, = (0+5,-0,)^+ V{ajfX +0i_x) (4.3) 

Rather than considering the eigenvalue problem, as part of 
whose solution the natural frequencies w are determined, we 
fix the frequency « near a», specify &x and %, and solve for 
a,, i=3,4,5 ... . If the individual site frequencies q+S, were all 
the same, then the solution would be a plane wave whose 
amplitude would neither grow or decay along the chain. But 
if the normal modes of the chain are all evansescent, then 
solutions of this 'Cauchy' problem with a,+S, specified 
randomly within o»±Ao will ultimately grow exponentially 
along the chain for almost any initial values a, and %. Such 
exponential growth characterizes not only solutions of the 
one dimensional problem, but also solutions of the two 
dimensional problem of a long 'bar' of lattice sites. Numerical 
estimates of the growth rate must necessarily be made by 
solving such a Cauchy problem for bars of finite width; 
MacKinnon and Kramer (1983) carry out such studies and 
explain how the results are to be extrapolated to a bar of 
infinite width. 
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4 6 8 10 12 14 
seamount oscillation frequency disorder / seamount coupling V 

Figure 1. Localization length %IK (units of lattice spacing R) vs 
disorder W = (Ao/o.)/(6(a/R)'|. 

They find that the exponential growth scale or 'localization 
length' I (units of lattice spacing R) increases as W is 
decreased. Their numerical results are summarized in Figure 
(1). Thus if, for example, the ratio a/R of seamount radius to 
lattice spacing is 1/4, then a disorder Aa/a» of about 25% 
leads to a localization length of about five lattice spacings. If 
the lattice spacing is increased so that a/R is 1/6, then a 
disorder of about 4% results in a similar localization length. 
Identification of this exponential growth rate with the 
localization scale of the modes over the full lattice is 
discussed in the one dimensional case by Crisanti et al. 
(1993; the numerical results of MacKinnon and Kramer 
(1983) in two dimensions correspond to the largest possible 
horizontal localization scale of the modes over the full 
lattice. 

5. Discussion 

The Anderson model (4.1) was the result of supposing that 
the topographic Rossby modes over the entire seamount 
lattice are primarily composed only of individual seamount 
oscillations of angular order n=l. If the seamounts are not too 
dissimilar, then there will also be topograhic Rossby modes 
over the full lattice that are primarily composed only of 
individual seamount oscillations of angular order n=2, 3 ... 
as well. But for sufficiently high angular order or sufficiently 
great seamount disorder, indivdual seamount oscillations of 
different angular orders at different seamounts may have very 
similar frequencies, so that coupling between different 
angular orders can no longer be neglected. Thus, although 
the foregoing analysis shows that the highest frequency 
lattice modes are localized by disorder in seamount height, 
the assumption of small seamount height disorder made in 
going from (3.2) to (4.1) is violated at sufficiently small 
frequencies. The ultimate consequences of this are not 
presently understood. 

The observation that the degree of localization induced by 
a given disorder in seamount frequency increases as the 
coupling V becomes smaller indicates that the inclusion of 
stratification or a free surface would have increased the 
degree of localization because individual seamount 
oscillations would then decay exponentially away from lattice 
sites. 

The foregoing results suppose that ß=0. If all the 
seamounts are identical save one and if the natural frequency 
of seamount oscillations of, say, angular order n=l about that 
seamount in isolation falls outside the bands within which 
plane topographic Rossby waves propagate over the lattice of 
identical seamounts, then a disturbance initially localized at 
that seamount will not ultimately propagate entirely away. It 
may be shown that this continues to be true for sufficiently 
small but nonzero ß. This suggests, but does not prove, a 
similar result for more general relief. 
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Focusing of Internal Waves and the Absence of Eigenmodes 
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Abstract The spatial structure of inviscid, monochromatic, internal waves in a uniformly stratified fluid is governed by the 
wave equation in spatial coordinates. Following Magaard (1962), solutions for this equation can be constructed by means 
of a recursive mapping. Solutions for a closed domain with supercritical side walls suggest that internal waves get focused 
to a fixed limiting trajectory, irrespective of the location where energy is introduced. As the focusing is accompanied by 
amplitude growth, this thus offers a mechanism by which 'mixing at a distance', along certain very special ray paths, may 
be accomplished. The location of the attracting trajectory is a fractal function of the frequency of the monochromatic wave. 
Solutions exist for any frequency of the wave field and thus no specific spatial patterns, 'eigenmodes', prevail. 

Introduction 

It is a well-known feature of plane internal waves, 
propagating through a uniformly-stratified fluid, that 
they retain their angle with respect to the horizon- 
tal upon reflection from a sloping bottom (Phillips, 
1977). For a wave entering a subcritically sloping 
wedge (having a slope which is less than that of the 
energy flux vector) the reflecting wave, bouncing back 
and forth between bottom and surface, propagates 
into the wedge, see Figure 1. Upon each reflection 
from the bottom the amplitude and wavenumber in- 
crease and will eventually become so large that they 
will give rise to nonlinear and / or viscous effects. 
This implies that the energy, which the incoming wave 
field carries, will be deposited there and will locally 
contribute to mixing (Wunsch, 1968, 1969). If the 
basin, however, has a supercritical side-wall, incoming 
internal waves will be reflected back into the deep-sea 
region. It seems legitimate to wonder what happens 
if the (2D) basin consists of two opposing supercrit- 
ical side-walls. Because, in that case, neither of the 
two corner regions will 'attract' the incoming internal 
wave, one might anticipate that the internal wave will 
be engaged in some complex process of criss-crossing 
of the basin. What exactly its ray path will be, how- 
ever, is not immediately obvious. 

When one looks for a stationary internal wave pat- 
tern of a particular frequency in an enclosed basin its 
streamfunction is determined by a hyperbolic equa- 
tion in spatial coordinates that vanishes at the bound- 
ary. Cushman-Roisin et al. (1989) and Miinnich 
(1993) each developed numerical algorithms that com- 
pute the structure of these patterns. The results seem 
to be partly at variance with analytical results that 
are discussed here and, more extensively, in Maas and 
Lam (1995; ML hereafter), due to the discretization 
of the bottom Magaard (1962, 1968) showed that the 
partial differential equation can,   remarkably, also be 

solved by an implicit map, which relates the new po- 
sition at which a wave ray reflects from the surface to 
its previous position. By supplying a streamfunction- 
related 'field variable' (carried invariantly along the 
ray) in a unique interval the streamfunction field is 
determined completely. Magaard applied this heuris- 
tically to a subcritical domain. It turns out that 
the map can be obtained explicitly for some simple 
bottom shapes, of which only the parabola will be 
considered here. With some modification this map 
can also be used for a basin with supercritical side- 
walls, which enables us to address the question, raised 
above, quantitatively. 

Bi-modal map 

Consider a uniformly-stratified fluid in a parabolic 
basin with depth 

H(x) r(l *e[-i,i] (i) 

and rigid lid at z = 0. The spatial structure of the 
streamfunction of a monochromatic wave of frequency 
ui is determined, in dimensionless form, by the canon- 

ical hyperbolic equation (see e.g. ML) 

dx2 
dhp_ 
dz2 0, 

/here 
■0 = 0   at    z = 0,-H(x) 

(2a) 

(2b, c) 

The only non-dimensional quantity still appearing in 
this problem, Eq. (1), is the 'virtual' depth, 

ND 

UJL 
(3) 

which is the product of the aspect ratio (where D 
and L are the depth and half-width of the basin re- 
spectively) and the ratio of the buoyancy N and wave 
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et 

Figure 1.  Sketch of a wave ray, propagating to the right 
in a parabolic basin given by (1) with r = 0.4. 

frequency w. This can, alternatively, be interpreted 
as a scaled period of the wave. Magaard (1962, 1968) 
shows that a solution of (2a), that also vanishes at 
the surface, is given by 

xl>(x,z) = f{x-z)-f(x + z), (4) 

for arbitrary function f[x). Physically f(x) is (except 
for a phase factor) related to the surface pressure, and 
its derivative to the horizontal velocity at the surface. 
Note that by adopting this kind of scaling the wave 
rays (along the directions of the characteristics z = 
± x+const.) always make an angle of 45° with respect 
to the horizontal, regardless of frequency. This scaling 
has as its disadvantage that rays can be plotted for 
just one frequency at a time, but makes it easier to 
assess the ray diagrams.   In particular, from Figure 
1, it is obvious that successive surface reflections of 
a wave ray (denoted by xn,   n = ..,—1,0,1,2,..) are 
related by 

xn+i - x 
sH{ (5) 

where x = (xn + xn+i)/2 and sign s = +1,-1 de- 
termines the two modes of the map for rightward 
and leftward moving characteristics respectively. The 
boundary condition at the bottom, z = —H(x), then 
implies 

f(x + H(x)) = f{x-H(x)). (6) 

Applied at x, Eq.6 and Figure 1 show that this implies 
that / is carried invariantly along the characteristic: 
f(x„+i) = f{xn). From this Figure it is obvious that 
once we specify f(x) for ^-values in between two suc- 
cessive surface reflections of any arbitrary ray, then 
this function is determined over the whole interval 
x e (-1,1)- The parabolic bottom in (1) has max- 
imum slope at its corners where it is ±2r. In the 
example of Figure 1 the topography is everywhere 
subcritical (2r < 1) and successive xn approach the 
right (s = +1) or left (s = -1) corner respectively. 

-0.5 

Figure 2. The bi-modal map for a) subcritical (r = 0.4) 
and b) supercritical (r = 0.7) values of the map pa- 
rameter. Successive surface intersections are given by 
x„, n = 0,1, 2,... Special points are indicated as x3 and 
xc, see Figure 3. 

The corners act as attractors. This is also evident in 
a graph of the map that we obtain explicitly from (5) 
for H(x) given by (1) as 

X(x) = -x h 
T 

Ax 1 
+ 4+ -5-. (7) 

Here the 'rightward map' (s = + 1) is considered and 
the successor of x is denoted by X(x). The successor 
of x with a leftward map leads to —X(—x). 

For subcritical topographies r < 1/2 the rightward 
and leftward map are decoupled (Figure 2a), when 
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T > 1/2, however, the corners are no longer attract- 
ing and the rightward and leftward map get coupled 
(Figure2b). Also, once x > xs — where xs is the 
point whose rightward map brings it. directly into the 
right-hand corner — the ray reflects downwards and 

its image is given by ML as 

Y(x) = -- x - 2X(x) 
T 

(8) 

At the same time, once this happens, the horizon- 
tal direction in which the ray propagates should be 
reversed and one should shift to the leftward map 
(lower curves in Figures 2a,b). A similar thing hap- 
pens when the ray reflects from the leftward side of 
the basin, and again s -> -s. Figure 3 gives a geo- 
metrical construction of Y(x) once the direct image 
of x, i.e. X, lies outside the physical domain. Also 
given in this diagram are 

-3 (9a) 

and the point where the critical characteristic reflects 

from the surface 

AT 
(96) 

These two 'points' play a special role in the subse- 
quent part of this paper. 

Figure 3. Construction of successive surface intersec- 
tions of characteristics for a super-critically reflecting bot- 
tom. The critical characteristic (surface intersection xc) 
and characteristic going through the right-hand corner (in- 
tersecting at xs) are given by dashed lines. Note that X 
and Y are always each  other's images for the rightward map. 

Focusing of internal waves 

With the bi-modal map given, the ultimate fate 
of a wave-ray can be obtained by iterating it both 
'forward' (initially to the right) and 'backward' (ini- 
tially to the left).   In this way it can be observed 

Figure 4. Bi-modal map (curved lines) and trajectories of 
a ray (rectangular lines) starting at x0 for r = 0.9. Solid 
(dashed) lines indicate the ray that initially 'moves' to the 
right (left). 

that the rays approach a limit cycle regardless of the 
direction which they start out with. In the exam- 
ple of Figure 4 this is a limit cycle characterized by 
two reflections from the surface (a period-2 attrac- 
tor). For even-period attractors this attractor is al- 
ways unique, for odd-period attractors each attractor 
also has a mirror-image, but the particular attractor 
favored asymptotically, i.e. for n large, depends both 
on the initial location and direction which the wave 
ray follows (see ML; this explains why in Figure 6 
below, the odd-period attractors are asymmetric: the 
mirrored attractor also exists, but is not reached with 
the initial conditions used). The approach of the at- 
tractor can, of course, also be viewed in the physical 
domain, which is shown, for this value of r, in Figure 
5. Independent of the direction in which the rays leave 
x0 initially, the attractor is asymptotically traversed 

in the same sense. 
The shape of the attractor is a function of the di- 

mensionless parameter r, the scaled period of the in- 
ternal wave. A nice way of presenting this is by plot- 
ting just the surface reflections of the attractor, that is 
of the asymptotic state of a wave ray (n large). In Fig- 
ure 6 this has been presented for values of r G (1/2,1). 
The lower boundary of this interval is determined 
by the requirement that the bottom be supercriti- 
cal. The upper bound is arbitrarily chosen so as to 
guarantee that there is always at least one ray that 
is reflected simply forward (this is the corner point, 
x = — 1, for T = 1). A similar pattern exists, however, 
in the next band r G (1,3/2) (ML). It is observed 
that there exist regions where the 'qualitative charac- 
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Figure 5. Construction of ray pattern for r = 0.9 and 
x0 = 0.15 by iterated mapping. Right and leftward 'mov- 
ing' characteristics are drawn as solid and dashed lines 
respectively. The final sense in which the limit cycle is 
traversed has been indicated by arrows. 

ter' of the attractor (the period, say) is invariant for 
small variations of r, like the period-2 attractor dis- 

cussed in Figures 4 and 5 in l/2\/3 < r < 1. These 
smooth bands are interrupted, however, by high pe- 
riod bands. Expansion of such bands shows that they 
qualitatively repeat these same features over and over 
again at ever reduced scales. As a function of r the at- 
tractor, therefore, is fractal. Note that the wave rays 
are never diverging (chaotic), as has been verified by 
calculating Lyapunov exponents which are always less 
than or equal to zero (ML). 

Specification of the wave field 

It has been argued in the discussion on the sub- 
critical parabolic bottom, Figure 1, that once f(x) is 
specified in between any two successive reflections of 
an arbitrary wave ray then both f(x) and, as a con- 
sequence, the streamfunction pattern are determined 
in the complete domain. This statement is modified 
in the case the bottom is (partly) supercritical and 
no complete classification is available yet. For the 
cases that the frequency (r) is in the period-2 (or 
4) band, two regions ('fundamental intervals') exist 
in which f(x) can be arbitrarily specified, such that 
by its specification the solution is determined com- 
pletely. In Figure 7 an example has been given for 
the period-2 region: r - 0.9. The intervals on which 
f(x) can be freely specified are found by inspection 
and are given (Figure 7a) by (-xc,xc) and (-l,xs). 
The latter range may also be replaced by the mirror 
interval (-xs, 1). It is observed that once we follow a 
beam of rays, originating in each of these fundamen- 
tal intervals, in both the right and leftward direction 
(indicated by solid and dashed lines respectively), two 
regions are traced out in the physical x — z plane, that 
are complementary to each other and that each ray is 
ultimately approaching the attractor. This indicates 

V'\       '■■     fig- 
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Figure 6. Plot of x900 - xnoo for x0 = 0.123456789 and 
s = +1 in the interval 1/2 < r < 1, where r is incremented 
with 1/1600 of this interval. 

that once f(x) is specified in the regions indicated at 
the top of Figures 7b and 7c, this field variable is de- 
termined over the whole region x 6 (—1,1). This has 
been demonstrated for a particular choice of f(x) in 
Figure 8a, being a sine, displaced differently in the 

two fundamental intervals. With this function f(x) 
the streamfunction pattern ip(x,z) of the oscillatory 
streamfunction Re[i>(x, z)eiwt], where t is time, can 
be determined as 

f(x -z)- f(x + z) in I 
ip = {   f(a(z - x) - x + z) - f(x + z)       in II 

f(x - z) - f{—a(x + z) — x - z)    in III, 

where regions I, II and III are defined as 

I: {x,z ; \x\- 1 < z < 0} 

II : {x, z ; -H{x) < z < x - 1} 

III :{x,z; -H(x) <z<-x-l}, 

and 

a(y) = 
1 + A/1 + 4r(r + y) 

(10a) 

(106) 

(10c) 

For f(x) real, the resulting pattern is, formally, a 
spatially standing internal wave pattern. As in the 
study of internal waves approaching a wedge (Wun- 
sch, 1968, 1969) it is unlikely, however, that the waves 
approaching the attractor ever get back (in order to 
form a standing wave) as other physical processes (like 
nonlinear and viscous effects), neglected sofar, will 
become active and drain the incoming energy flux, 
implying mixing along the attractor within the basin. 
A more correct solution would equally have to show 
an internal wave pattern just propagating towards the 
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/(*)* 

Figure 7. (a) Lines ±XC(T) and ±I,(T) as a function of r. 
For T = 0.9 the fundamental intervals have been indicated, 
b) Rays coming from the inner and c) outer fundamental 
intervals in the specific 2-cycle case. 

attractor. The technical implementation of this and 
the evaluation of a proper initial value problem are 
currently being studied. 

Absence of eigenmodes 

It has been expected that internal waves in en- 
closed stratified basins will be characterized by the 
existence of eigenmodes. This is suggested by the 
presence of such modes for the corresponding surface 
gravity wave problem and similar modes for interfa- 
cial waves in a two-layer fluid, referred to as internal 
seiches (Defant, 1941). Consider, for instance, the 
long wave modes that appear at the surface of a ho- 

l 
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Figure 8. a) Function f(x), specified in the two funda- 
mental intervals (parts of z-axis indicated at the top, cor- 
responding to those indicated on the dashed line of Figure 
7a), and subsequently calculated values of f(x) in remain- 
ing parts of domain for r = 0.9. b) Spatial structure of 
streamfunction field, xp(x, z), obtained from f(x) with Eq. 
(10). 

mogeneous fluid in a one-dimensional basin x £ (0,1) 
of constant depth. The horizontal velocity field is de- 
termined by the wave equation 

dt2 _fl^_n (11) 

Here L denotes the basin length and c is the long 
wave speed. For monochromatic waves, u(x) oc e'wt, 
solutions, un{x) = sinn7ra;, vanishing at the sides of 
the basin, determine a discrete set of frequencies 

u>'n = nn, 

where frequency has been nondimensionalized with 
L/c: u/ = LOL/C. The existence of eigenmodes is 
useful because, when they form a complete set, the 
forcing — which in the above example should appear 
at the right-hand of (11) with a spatial part F(x), 
say — can be projected on the eigenmodes and the 
solution of the forced problem can subsequently be 
written down as the sum over the eigenmodes 

K=E^ 
Fn —:r smmrx, 

weighted with amplitudes, F„, that are determined 
by the projections of the forcing 
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F„ = Fix) smmrxdx. 

Münnich (1993, 1994) noted that this correspondence 
breaks down once the fluid is continuously stratified. 
This phenomenon is foreshadowed by the degener- 
acy of the 'eigenmodes' that appear in a rectangular, 
stratified basin. For a streamfuncion field describing 
linear internal gravity waves, ip(x, z)elMt, the spatial 
pattern is determined by 

0, 
d2iP        nd^± 
dx2    w  8z2 

where the wave frequency has here been normalized 
with the buoyancy frequency and the aspect ratio, 
and the rectangle is given by x, z £ [0,1] x [0,1]. With 
vanishing streamfunction at the boundary solutions 

are obtained as 

ip(x, 

provided 

sin nnx sin mm 

n 
= ±-, 

m 

(12a) 

(126) 

for natural numbers n,m. As Münnich (1993, 1994) 
remarks, it is clear from (12) that, first of all, the 
'eigenfrequencies' u'n<m, being rational, are no longer 
well-seperated — they are dense within the real num- 
bers — and, second, that the 'eigenmodes' are no 
longer unique, as any common multiple, j 6 M, of 
n and m leads, by (12b), to the same eigenfrequency 
but has a mode structure (12a) that is the j-tuple of 
the original mode. As is observed in ML this implies 
that for this geometry, in the case of forcing, we can 
circumvent the forward and backward discrete Fourier 
transform and are able to construct the solution di- 
rectly from the specified forcing by means of the ray 

method. 

These results apply also to nonrectangular basins, 
except that the degeneracy, as Figure 6 shows, is 
even worse, because 'eigenmodes' exist for frequen- 
cies within compact domains and are, within the fun- 
damental intervals, completely arbitrary. Instead, for 
the parabola discussed here, there is just a discrete 
set of wave frequencies for which no stationary inter- 
nal wave pattern exists. It is clear that by this time 
the 'eigenmode' has lost all its specificness and this 
terminology is no longer useful. The 'failure of the 
eigen value approach' has previously been noted by 
Cushman-Roisin et al. (1989), but the way the bot- 
tom is discretized in their numerical approach (by a 
set of horizontal and vertical line segments) precludes 
the identification of the focusing phenomenon. 
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Topographie Filtering and 
Reflectionless Transmission of Long Waves 

Leo R.M. Maas 

Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Texel, The Netherlands 

Abstract The equation governing the passage of monochromatic, long waves over variable topography can be transformed 
into a Schrödinger equation. There are several transformations accomplishing this. A 'naive' transformation (in which only 
the horizontal coordinate is stretched) has a 'potential' that is non-vanishing, even if the slope in topography vanishes. A 
transformation, in which also the surface elevation field is stretched, has a 'potential' vanishing outside the sloping region. 
This transformation has the property that it displays scattering against a background of adiabatic variations. That is, the 
plane waves that result if the potential is approximated to vanish identically, display amplitude and wave length variations, 
in the original frame, as in WKB-theory. For smooth bottom profiles, typical for the continental slope, the potential has a 
positive lobe, the top of which acts as a 'topographic cut-off frequency'. This lobe is missed by piecewise-linear topographies. 
The trapped modes of the adjacent negative side lobe are the topographic Rossby wave modes. For a particular smooth 
bottom-profile, long waves, coming from a specific direction, can be shown to pass reflectionless. 

Schrödinger equation 

It is often instructive to consider scattering prob- 
lems in terms of a Schrödinger equation, because it 
allows one to qualitatively assess the local nature of 
the wave field under consideration. The relevance of 
this equation for the long-wave equations is discussed 
in the next section. The Schrödinger equation, 

dx2 [E-V(x)]V = Q, (1) 

describes the shape of the state variable ^(x), related 
to the wave field, ip(x,t) = $(a:)e~i<7(, (with t denot- 
ing time and a the frequency), due to inhomogeneities 
of the 'medium' through which the wave propagates 
as a function of the coordinate x. The variations of 
the medium are here represented by the 'potential' 
V(x). For localized variations of the medium it is 
natural to expect the potential to vanish outside the 
«-region for which these variations occur. For values 
of the 'energy' E greater than the maximum value of 
the potential, Vmax, (like E\ in Figure 1) the quantity 
in square brackets in (1) is everywhere positive and 
hence the solution is locally sinusoidal. It is there- 
fore expected that the wave will not be greatly at- 
tenuated by the scattering potential. If E drops 
below this maximum, but is otherwise positive (i?2 

in Figure 1), this quantity is negative over some x- 
interval and hence the wave field will be exponen- 
tially decaying over this range leading to great at- 
tenuation of an incoming wave field: waves can pass 
only through 'tunneling'. For negative values of the 
'energy', Vmin < E < 0, like E3 in Figure 1, trapped 
waves can exist. Finally, for still lower values, like 
£"4, wave solutions no longer exist. Here we will con- 
centrate on positive values of the 'energy' parame- 

Figure 1. Sketch of a 'typical' potential V(x) and four 
levels of the energy, E\ to EA. Solid (dashed) parts of the 
energy levels refer to sinusoidal (exponential) behaviour of 
the wave field. 

ter, E. Actually, this quantity is usually not related 
to the true energy of the wave field, but rather is 
to be regarded a metaphor for the frequency of the 
wave involved. Therefore, for an incoming spectrum 
of waves, the existence of a maximum in the poten- 
tial, Vmax, can directly be interpreted as a (soft) cut- 
off frequency: for waves with energy (frequency) well 
above it, waves can pass unimpeded, for waves with 
energy (frequency) below Vmax, waves are strongly 
attenuated. The cut-off frequency is soft, however, 
since no rigorous cut-off (zero transmission) of the in- 
coming wave field below this frequency is implied. A 
potential like the one shown in Figure 1 thus acts as 
a high-pass filter. 
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Topographie filtering 

Consider a long, plane wave propagating on an /- 
plane at the surface of a homogeneous fluid incident 
on a smoothly and monotonically varying topogra- 
phy H(x). Let the surface elevation take the form 
((x) exp(ily - iat). Here I indicates the wavenumber 
in the along-slope direction y. We non-dimensionalize 
with length (L) and depth (Ho) scales appropriate to 
the shelf edge and with the inertial frequency, /: 

x -» Lx, / -> l/L, H ->■ H0h(x), a -» fa, 

where h(x) is a nondimensional shape-function, mod- 
eling the shelf edge. The cross-isobath structure of 
the elevation field, ((x), is then determined by 

dx I   dx 
+ e2(a2 l)-l2h - C = 0.   (2) 

Here e = L/R is the ratio of the external scale L and 
the Rossby deformation scale, R = \/gH0/f- The 
square of e is known as the divergence parameter. In 
general this is a small quantity. For instance, taking 
Ho = 1 km, L = 100 km, g = lOm2«"1, / = lO^s"1 

one obtains e = 10"1. However, since the theory may 
equally be applied to interfacial waves this quantity 
may be order one. In this case depth is replaced by 
equivalent depth, he(x) = h1h2(x)/(hi + h2(x)) and 
gravity, g, by reduced gravity g', being equal to g 
multiplied by the relative density difference of thetwo 
layers. Typical values of these lead to a phase speed 
of about one-hundredth of its value in the barotropic 

case. 

Equation (2) can be 'naively' transformed to a Schrö- 
dinger equation by multiplying it with h and identify- 

ing hd/dx with d/d£,, which amounts to a stretching 
of the horizontal coordinate, 

=L hW)dx'' (3) 

in inverse proportion to water depth.   The equation 

then takes the form 

ft 
dC 

€2(<r2-l)h(Z)-l2h2(Z) 
I dh 

ä~d(i 
C = 0,  (4) 

where h(£) = h(x(£)).   This equation was employed 
by Saint-Guily (1976), who, for the depth profile 

h(£) = 1 + Atanh£, (5) 

with A G (-1,1), was able to calculate the trapped 
modes — the topographic Rossby waves — exactly. 
For the case of free, propagating waves, however, the 
potential is not 'physically realistic' as one may ob- 
serve by concentrating for example on waves of nor- 

mal incidence (1 = 0). In this case (4) simplifies to 

ft § + eV-l)MOC = 0, 

which, for the tanh-shaped topography considered, 
leads to a potential that is non-vanishing at infinity 
and therefore does not satisfy the requirement that 
the scattering be localized. 

For this reason a transformation is employed that 
stretches not only the horizontal but also the verti- 
cal coordinate (the elevation). Discussion is for the 
sake of simplicity here limited to waves of normal in- 
cidence (1 = 0), for which case (2) takes the form 

Ält|)+fV-iK = o. (6) 

The general case of obliquely incident waves can 
be treated likewise. If we now adopt the following 
stretching (Morse and Feshbach, 1953, p.730) 

£ = VH> 
-.dx1,   C = 

ftl/4' 
(7) 

then (6) takes the form 

cPZ 

de + eV-1) 
1 2/ll/4 

ftl/4    d(2 Z = 0, 

which is a Schrödinger equation once we identify en- 
ergy and potential as E = e2(a2 - 1) and V(f) = 

h-l'4d2h1'4/d£,2 respectively. This shows that 'en- 
ergy' E is indeed related to frequency a. Since the 
second ^-derivative of hllA is related to first and sec- 
ond «-derivatives of the topography h(x) (see below), 
which vanish away from the sloping region, it is ev- 
ident that this form of the potential does also van- 
ish outside that region and hence is of the localised 
form we expect it to have as a scattering potential. 
Also, the expression for E nicely identifies its positive 
values with freely propagating, superinertial (a > 1) 
waves and its negative values with trapped, subiner- 

tial (a- < 1) waves. 

Without actually solving the resulting equation a 
number of inferences can be drawn from the form it 

has. 

First, assume that we are dealing with energy- 
values (frequencies) which are much greater than the 
maximum value of the potential E » Vmax- Then, 
we can approximate the potential by assuming that 
it vanishes identically, V(£) = 0. In this case, the 
solutions in the transformed plane consist, of course, 
of plane waves of the form Z = Z0 exp(±iVE£). In 
the original frame this solution reads 
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c = W-l* 
exp(±ivE 

^h[z 
-dx1 — ioi) 

which contains wave number variations (the x-deri- 
vative of the phase factor) inversely proportional to 
y/h and amplitude variations inversely proportional to 
/i1/4. The latter is known as Green's law (Mei, 1989). 
These are consistent with adiabatic variations such 
as occur in WKB approximation, which would have 
group velocity cg and phase velocity proportional and 
hence wave number variations inversely proportional 
to y/h, and which would require conservation of en- 
ergy flux, proportional to |(|2c9. Since amplitude 
(and wave number) variations associated with adia- 
batic changes do not form part of the scattering pro- 
cess the physically appropriate frame of reference in 
which to consider scattering is that based on (7). Any 
amplitude and wave number variations obtained in 
that frame are truely associated with scattering. 

Second, consider a typical monotonic shelf edge, 
like /i1/4 = 1 + Atanh£, which is similar to the topog- 
raphy employed by Saint-Guily (1976) except that it 
now applies to the quarter power of the topography. 
Then, the potential takes the form 

V(0 = -2A 
T(l-T2 

1 + XT 

Figure 2. Sketches of the topography h(£) = (1 + 
A tanh£)4 for A = 1/2 as a function of £ (a) and, paramet- 
rically, of x (b). The potential V(£) = /j-1/4d2h1/4/df 
can be obtained from these, both in the transformed (c), 
as well as, again parametrically, in the original frame (d). 

Here the ^-dependence on £ is given by x = f 

£(1 + A2) + 2Aln[cosh£] - A2 tanh£, see (e). 

where T = tanh£, see Figures 2 and 3a. The poten- 
tial is observed to have the typical two-lobed shape 
adopted in the discussion of Figure 1, the positive lobe 
extending over the top of the shelf edge. The posi- 
tion of the maximum value of the potential, Tmax, 
as well as its value at this position, Vmax, can be 
determined analytically as a function of the 'depth- 
contrast parameter' A. Their expressions are rather 
cumbersome and are therefore just shown graphically 
(Figure 3b). Now, since the topology of the prob- 
lem would not change when we vary the shape of the 
monotonically sloping topography, we may expect the 
occurence of a positive lobe (V(£) > 0 for some range 
of £) to be a generic feature of this scattering prob- 
lem. Therefore, following the discussion in the intro- 
duction, one may infer that there exists a topographic 
cut-off frequency aT = (1 + e~2Vmax{X))1^2, for any 
monotonically-sloping topography, which is a function 
of the geometrical parameters (the divergence param- 
eter e2 and the depth-contrast parameter A). For the 
parameters considered previously c = 10_1, and for 
A = 1/2, which has Vmax « 1/2, we obtain aT « 7. 
For interfacial waves, with e m 1, UT approaches the 
inertial frequency even closer (cry 4-1)- It is likely 
that this quantity trT must be observable as a dividing 
frequency when comparing adjacent directional deep- 
sea and shelf spectra, such that for cr > crT, waves can 
pass the sloping region fairly easy (and vice versa). 

Third, expanding the expression of the potential 
we find 

V 
1 d2h 

Ah!? 16 

Idh 

h~dj 

ld?h 

Adx2 

1    (dh 

16/i \dx 

Since h > 0 for all x, the second term in the last 
expression at the right is always negative. Hence 
the potential is positive only because of the existence 
of the first term in that expression, which is related 
to the (convex) curvature of the topography at the 
top of the shelf slope (Meyer, 1979). It is clear that 

Figure 3. (a) Potential V as a function of T for A = 
0.9. Since T = tanh£ is a monotonic function of £ this 
is a compact way of representing the ^-dependence of the 
potential. In this figure the position, Tmol, and value of 
the peak of the potential, Vmax, have been indicated, which 
are shown as a function of A in (b) and (c). 
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this term would be absent in piecewise linear topogra- 
phies, which would therefore exclude the phenomenon 
of tunneling and, to some extent, topographic filter- 

Reflectionless transmission 

Another artifact would actually be introduced when 
approximating a smooth, monotonic topography by a 
piecewise-linear topography. This is the spurious phe- 
nomenon of reflectionless transmission at certain dis- 
crete wave frequencies (which have wave lengths that 
are multiples of twice the size of the linearly sloping 
region). It is generally regarded that the occurence 
of these reflectionless frequencies is not realistic (Ka- 

jiura, 1963; Meyer, 1979; Met, 1989). Indeed, for 
a smooth monotonic profile, Kajiura (1963) showed 
that the transmission coefficient is a steadily decreas- 
ing function of frequency. Reflectionless transmis- 
sion of normally-incident long waves over smooth to- 
pographies is found only for (symmetric) ridges. Fitz- 
Gerald (1976) obtained this result semi-analytically 

without restriction on wave length by an iterative 
scheme (see also Rouseau, 1952). 

Surprisingly, as will be shown below, reflection- 
less transmission may also occur for a smooth, mono- 
tonically-increasing depth profile. This occurs for a 
particular angle of incidence of the long waves. Iron- 
ically, this can be demonstrated most easily by em- 
ploying the naive transformation (3) and using the 
Saint-Guily (1976) topography (5). Eq. (4) then 
reads 

de 

E' satisfies the positivity constraint: E' = E(l — A"). 
Since 

E=e2(a2-1), (10) 

which, from the dispersion relation applied in the far 
field, equals h(l2 + k2), we find, assuming the waves 
to enter from the deep region, where h = 1 + A, 

E={l + X) 
I2 

sin  a 

Here the absolute value K of the wavenumber vector 
k = (k,l) = K(cos a, sin a) that makes an angle a 
with the «-direction, has been replaced in terms of / 
and a. Hence, inserting this expression for E in (8) 
and eliminating I2, we find that waves coming from 
directions a» determined by 

(ID 

are able to pass this shelf edge reflectionless, provided 
they satisfy also the second constraint (9). From (10) 
and (8) we obtain a as a function of b = IX: 

Vl + a2b2, (12) 

[E - /2(1 + A2) + \{E - 2/2) tanh£ 

where a2 = 2/A2e2. Inserting this into (9) and plot- 
ting both the left and right-hand sides of this equation 
as a function of b (Figure 4), we find at their intersec- 
tions the wave numbers for which waves coming from 
directions determined by (11) are able to pass the 
shelf edge reflectionless. From (12) their frequencies 
can be obtained. For a > 1, these are approximately 
determined by the two asymptotic (dashed) curves of 
Figure 4 which lead to 

-/A(--/A)sech^]C = 0. 
a 

This is of the form 

^+[E' + n(n + l)sech2e] C = 0, 
at," 

with n £ IN, for which Kay and Moses (1956) showed 
that the potential is reflectionless for any positive 
value of the energy E' (see also, Lamb, 1980). Identi- 
fying coefficients between these equations we find that 
long waves are able to pass the tanh-shaped shelf edge 
reflectionless provided 

and 

E = 2l2, 

IX(--IX) = -n(n + l). 

(8) 

(9) 

Because E' = E - I2{I + A2) we verify from (8) that 

-*b 

a = 2 

->6 

Figure 4. Plot of b/y/1 + a2b2 - b2 and -n(n + 1) (solid 
lines) as a function of b for two values of a and integer 
n £ {0, 1,2}. Heavy dots indicate values of b (i.e. scaled 
along-isobath wavenumber I) for which waves, coming from 
a direction a, given by (11), are able to pass the tanh- 
shaped shelf edge reflectionless. Dashed lines indicate the 
two asymptotes ±l/a — b2. 
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0-2 = 1 + — a + a2n(n+l),    n e IN. 
n 

For n = 0 only one physically realistic solution is 
obtained, having the coast at its left (in the Northern 
Hemisphere), seen from the along-shelf propagation 
direction (/ > 0). The expression of the frequency for 
general values of a is slightly more involved. 

Conclusions 

It  is shown  qualitatively that  a monotonically- 
sloping shelf edge generally acts as a topographic filter 
for incoming long super-inertial waves. This filter can 
be characterized by a (soft) cut-off frequency above 
(below) which waves can pass the topography with- 
out (with) much attenuation. This frequency is solely 
dependent on parameters characterizing the geome- 
try of the problem (topographic scales, latitude and 
earth rotation rate). The filtering properties are cru- 
cially dependent on the existence of a convex part of 
the bottom shape at the top of the shelf edge. It pro- 
vides the positive lobe of the localized potential in the 
Schrödinger equation to which the scattering problem 
can be transformed. It is attractive to view this posi- 
tive lobe of the potential of a shelf edge as providing a 
natural shield by which the shelf region is 'protected' 
against incoming waves.   Each shelf edge, however, 
also has an Achilles' heel. It is transparent for waves 
of particular discrete frequencies,  coming from two 
directions determined by the 'depth-contrast param- 
eter', that are able to pass the shelf edge without any 
reflection. These are the two directions for which the 
shelf edge under consideration is particularly 'vulner- 
able'.  Although no parameter-sensitivity analysis of 
these results has been made yet it is conjectured that 
a true shelf edge should show its 'vulnerability' over 
some range of angles and frequencies around those 
calculated.   It would be useful, therefore, to make a 
catalogue for shelf edges around the world identify- 
ing these reflectionless angles and frequencies at each 

location. 
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Circulation, Exchange and Mixing at the Ocean-Shelf Boundary 

J.M. Huthnance 
Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, Merseyside L43 7RA, UK 

Abstract. The coastal ocean meets the deep sea at the continental shelf edge. Steep bathymetry may inhibit ocean- 
shelf exchange, but in combination with stratification gives rise to special processes and modelling challenges. A 
preliminary assessment is made of potentially influential processes in ocean-shelf exchange, water-mass structure and 
general circulation, according to their scales and context: internal tides and waves; upwelling, fronts and filaments; 
downwelling, cascading; along-slope currents, instability and meanders; eddies; tides, surges and coastal-trapped 
waves. Present and planned measurements to improve this assessment are discussed; also implications and prospects 
for modelling. 

Introduction 

Interest in the continental shelf edge has increased in 
recent years. For example, exchanges and the possibility 
of an active ocean-shelf boundary, with particular shelf- 
edge contributions to fluxes, are of topical interest for 
global fluxes, budgets and their response to climate 
change and human activities (e.g., Wollast, 1993). 
Physical processes underlie shelf-water characteristics and 
many such fluxes. 

The need for improved process understanding is 
illustrated by contrasting satellite remote-sensed images 
west of Scotland. A sharp shelf-edge boundary to a 
coccolithophore bloom on 17 May 1980 (CZCS; Pingree 
and Mardell, 1981) suggests a strong bathymetric 
constraint, whereas the water mass boundary (to the 
Scottish Coastal Current) showing on 13 April 1981 (IR; 
Booth and Ellett, 1983) is on the shelf, suggesting freer 
exchange across the shelf edge. Moreover, the spatial and 
temporal measurement scales required for flux estimates 
remain unknown in general. 

Currents varying on time-scales of days or longer tend 
to be constrained by geostrophy to flow along depth 
contours, inhibiting ocean-shelf exchange. Other factors 
may facilitate exchange: 

- processes enhanced or special to the shelf edge (e.g., 
Huthnance, 1981) 

- proximity to the equator (weaker geostrophic 
constraint) 

- friction relaxes the geostrophic constraint, notably in 
Ekman layers 

- shorter-scale excursions combined with non- 
conservative processes, for net <uC>. 

Unfortunately, coherent estimates of <uC> checked by 
budget closure are rare. 

This lack of naive estimates of flux suggests a more 
informed approach through process understanding, and 
model development and testing for representation of 
processes.   Then   extrapolation   and   integration   over 

processes, space (context) and time can be carried out by 
extending the models. 

Initial Assessment of Processes 

The following have been considered as potentially 
influential processes in ocean-shelf exchange, water-mass 
structure and general circulation, according to their scales 
and context: 

coastal trapped waves 

along-slope currents 
western boundary currents 
relation to ocean circulation 

boundary current separation 
secondary circulation 

instability, meanders, eddies 

Ekman transport and upwelling 
jets, squirts and filaments 
downwelling and cascading 

tides, storm surges, inertial currents 

fronts 

internal tides and waves 

surface waves 

capes and canyons 
cross-contour flow 
local upwelling 
wave reflections 

For this purpose, literature has been reviewed, and 
theory and previous measurements interpreted. More 
details are in Huthnance (1995). 

Interim Conclusions by Process 
Coastal trapped waves underlie and control phenomena 

important to ocean-margin circulation, exchange and 
mixing, rather than making an independent contribution. 
Their magnitude is generally determined by the forcing of 
a "primary" phenomenon. They propagate effects of 
forcing from one location to another along the shelf, and 
may make a distinctive contribution to the magnitude of 
circulation and exchange, via a near-resonant response or 
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propagation to a shelf/slope sector of.different character 
(e.g., narrower). We still lack a complete description of 
super-inertial waves. 

Along-slope currents may be driven with speeds 0(0.1 
m/s) by a variety of forcing mechanisms: fresh-water 
runoff: the oceanic density and associated pressure field; 
winds - either steady or unsteady with biased form drag; 
upwelling; non-linear waves, tides or eddies; geostrophic 
adjustment following mixing. Transfer and deposition of 
momentum by internal lee waves may redistribute the 
current. Different    cross-slope    distributions    and 
ageostrophic cross-slope "secondary" circulation 
correspond to the different types of forcing, which still 
need to be resolved in many contexts. Along-slope 
continuity (distinguishing dynamics, transport, and water 
mass) remains an issue. The relation to oceanic 
circulation needs further clarification, with scope for 
investigation using simple ocean models and a cross-slope 
section (Fig. 1). Existing model solutions appear to be 
partial, e.g., Huthnance (1984) omits the effect of 
stratification on the sloping boundary layers; boundary 
solutions reviewed by Garrett et al. (1993) typically omit 
alongslope pressure gradients representing sustained 
forcing, alongshore flow divergence and time-dependence, 
any of which may assist cross-slope flow and matching to 
oceanic flow. Western boundary currents appear to be 
distinct as part of the ocean circulation, and show (relative 
to their greater strength of order 1 m/s) limited exchange 
with the shelf; eddies and streamers in Gulf Stream Warm 
Core Rings (for example) do show some exchange. 

Upwelling and downwelling juxtapose ocean and shelf 
waters in structures depending on the context and duration 
of forcing. Hence they enable mixing to change water 
masses and bring about ocean-shelf exchange, especially 
locally in jets and filaments. Cascading (e.g., Fig. 2) also 
tends to be local, the result of dense water (e.g., from 
winter cooling or salinated by evaporation or ice 
formation) finding a route off the shelf below the less 
dense adjacent slope water. Initially, cascading may be 
caused by instability of the flow in geostrophic balance 
with the cross-slope gradient of density, or it may be in 
the bottom Ekman layer under this flow; then any 
depression in the shelf edge is liable to facilitate and 
concentrate the process; hydraulic control may then 
operate. There is a need for measurements over long 
periods to improve statistics and estimates of the 
magnitude, space- and time-scales of these often 
intermittent and seasonal events. 
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Figure 1. Schematic cross-slope section. Streamlines of cross- 
slope exchange (—) match the baroclinic shear (—>) associated 
with the oceanic density field and form the Ekman transport under 
an along-slope current (velocity contours —). However, solutions 
allowing for buoyancy forces in this section are the subject of 
continuing research. 

Figure 2. Evidence of late-winter cascading, 1989, off the eastern 
side of Rockall Bank near 57'/2°N, 13'/20W (D.J. Ellett, personal 
communication). 

Tidal and wind-driven currents are important in many 
shelf and slope seas, notably the north-west European 
shelf where they commonly exceed 0.5 m/s and are 
generally the largest contributor to turbulence, friction and 
mixing. Inertial currents may be particularly important to 
vertical mixing in the interior via their associated shear. 
Although transports are large (and long-period winds may 
drive substantial along-shelf displacements) the cross- 
slope flow is oscillatory, tending to limit exchange to the 
results of shear dispersion. Tides and wind-driven 
currents in homogeneous waters are quite well predicted, 
but measurements of mid-water turbulence would aid 
confident model predictions of inertial motions and 
associated mixing. 

Fronts are associated with differential tidal mixing, 
fresher waters nearshore (Fig. 3) and well-developed 
upwelling. Cross-frontal transport and exchange depend 
critically   on   frontal   instability   and   (e.g.,   frictional) 
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relaxation of geostrophic constraints to allow cross-frontal 
flow. There remains scope for a general formulation 
predicting the occurrence of fronts, taking account of both 
buoyancy factors (surface heating, lateral freshwater 
input) and both surface stirring (wind, waves) and bottom 
stirring by tides. 

example, Fig. 4) as the balance between wind stress and 
the pressure field varies according to depth; local 
intensification of upwelling or internal waves. In 
addition, the extra length of an irregular ocean-shelf 
boundary increases the scope for ocean-shelf exchange. 

Figure 3. Schematic cross-front sections, (i) Tidal mixing fronts, 
between vertically mixed and summer-stratified seas, often have a 
strong density contrast across the lower interface, (ii) Fresher 
water on the shelf will tend to flow off-shelf above a shelf-break 
front. The sketch shows possible surface slopes (exaggerated) and 
gravitational cross-slope circulation (—>, <—) associated with any 
(friction-induced) deficit in otherwise geostrophic along-slope 
flow (® - into paper; © - out of paper, northern hemisphere). 

Internal tides and waves are ubiquitous in the ocean, 
but of widely-varied magnitude according to location near 
the shelf edge, which is a principal generator of internal 
tides and consequent solitons contributing to the internal 
wave field. These motions are important to internal 
mixing, and to bottom currents and mixing where they are 
locally intense, notably in canyons. There remains a need 
for closely-spaced measurements of currents and 
temperature time-series, to test developing 3-D models of 
internal tides and waves. 

Surface waves are often large enough to be important 
for near-surface mixing, but there is no special effect of 
the shelf edge in comparison with elsewhere in the ocean. 
Near-bed currents are small for typical shelf-edge depths, 
for all but the longest waves and shallowest shelves. 

Along-shelf curvature of depth contours or changes of 
depth, associated with capes and canyons, may affect 
ocean-margin circulation, exchange and mixing processes 
in several ways: relaxation via small length scales of the 
constraint for geostrophic flow along depth contours; a 
"conduit" for the return of flow forced by winds (for 
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Figure 4. Deep embayment with wind stress x inducing raised 
surface elevation at the head (right). The resulting exchange is via 
inflow in the shallower water "2" driven by the wind, and return 
flow in the deeper water "1" where the surface-slope-induced 
pressure gradient is more effective. 

Comparison of Processes 
This is synthesised in the following tables. These 

estimates are not uniformly applicable: they only apply 
where the process or phenomenon occurs; the magnitude 
scales according to the controlling variables via the 
formula given under "Scale." The numerical values 
derive from the given scale using "typical" values for the 
context, as given below (along with other notation). 

Overall, many processes contribute 0(1 mV) 
exchange, albeit distributed in different ways through the 
water column (which will be significant according to the 
constituent transported). On this basis, internal tides (for 
example) are important only where exceptionally large, 
but upwelling should be important wherever it occurs. 
Larger exchanges potentially accompany boundary current 
divergence (although there is no evidence of values as 
large as tabulated), tides (but the return flow half a cycle 
later tends to reduce any longer-term transport), and 
canyons locally. Perhaps surprisingly, the Gulf Stream 
does not in practice seem to be the cause of larger 
exchanges than (for example) the relatively weak slope 
current around Scotland. 



Table 1. Notation 
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Symbol Meaning Value Unit 

a 

A/hb 

C 

Cp 

CD 

d 

div 

f 

h 

hx 
ho 
ho/Ah 
holp_1Vpl 
h' 

H 

k 

ki 

LT 

Lx/Ly 

N2 

Rl 
Sv 

t 

tD 
u 

u 

V 

Vw 
w 
Ws 

a 
a' 

ß 
Ahr 

2Ah/h0 

<> 
X 

P 
a 
Ow 
X 

© 

<> 

surface wave amplitude 

marginal sea area / entrance strait cross-section 

constituent concentration 

specific heat 

quadratic bottom friction coefficient 

deep ocean depth 

divergence in western boundary current 

Coriolis parameter 

gravitational acceleration 

reduced gravity: g x density change across thermocline / p 

water depth (shelf and slope) 

depth gradient across slope 

depth of principal oceanic circulation or thermocline 

ocean current depth / (ocean current depth - shelf-sea depth) 

steric slope 

depth of seasonal thermocline 

surface heat flux (winter cooling) 

linear bottom friction coefficient 

linear friction coefficient below oceanic circulation 

topographic length scale h/hx (over steep slope) 

ratio of zonal to meridional scales, oceanic gyre 

squared Brunt-Väisälä frequency = - gp_13p/3z 

internal Rossby deformation radius = (g'h')I/2/f or Nh/f 

1 Sverdrup volume transport 

duration of wind forcing 

time constant for tidal shear dispersion 

cross-slope velocity 

vector velocity 

along-slope velocity 

western boundary current speed 

wind speed 

shelf width 

thermal expansion coefficient 

frontal exchange coefficient 

northward gradient of Coriolis parameter 

small random topographic irregularities 

where Ah is height of ridge with associated upwelling 

cross-stream gradient in western boundary current 

surface tide amplitude in shelf sea 

in marginal sea connected by narrow strait 

internal tide soliton amplitude 

combined length of internal solitons per tide 

sea-water density 

forcing frequency (e.g., tide, wind) 

surface-wave frequency 

wind stress on sea surface (<-4 wind speed ~ 10 m/s) 

eddy circulation 

ensemble average (usually effected as a space- or time-average) 

1 m 
105 — 

4.2 J/(g°C) 

0.003 — 
4000 m 
io-3 km"1 

10"4 s-« 
10 ms' 

0.01 
_2 ms 

100 m 

1000 

1 

IO"7 

m 

— 

25 m 
100 Win2 

1 mm s"1 

Vi mm s"1 

10 km 
5 — 

106 mV 
105 s 
103 s 

0.1 m/s 

0.1 m s"1 

1 ms"1 

10 m s"1 

100 km 
IO"4 (°C) -1 

0.0055 — 

IO"11 s-V1 

10 

1 

0.01 

m 

km"1 

1 m 
0.1 m 
50 m 
1 km 
IO3 kgm"3 

IO"4 s-1 

1 s-1 

0.1 Nrn2 

IO5 2 -1 nrs 
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Table 2. Exchange 

Process Scale e.g., m2/s 

slope current kv/f 
e.g., Atlantic inflow Malin-Lewis 
total Scottish slope 

topographic irregularities v Ah] 

(0.2 Sv / 300 km) 
1 
1 

eddy 
warm-core ring streamer 

aggregate (Middle Atlantic Bight) 

©h0(h0/Ah)/f 
? 

(1 Svxl2d) 
(lSv) 

0.3 

impulsive wind 
upwelling 

jets (narrow-shelf 

- wind 
- div. W boundary current 

upwelling areas) 
aggregate 

2hc 

x/pf 
T/pf 

,2Vwax(Vw/d xh0)div/f 
? 

1 
1 

20 
(2Sv) 

2 

front 

cascading' ' 
e.g., along isopycnals, Middle Atlantic Bight 

(0.6)" 

cx'h(g'h')1/2 

1(ga/pcp)2/3h(H2AVs)1/3/f 

0.3 
0.2 

0.25 

tides^ 
strait to marginal sea 
shear dispersion (hu = G£WS) 

internal tide solitons' -* 

ot;A 
tpuh 1 u 1 fLj 
<£>Mide 

10 
(>1 Sv) 

0.1 
1 

waves' Stokes drift 

W boundary current and bend 
slope current and bend 0 
cape eddy 

canyon return flow*- ^ 
ridge-associated upwelling 

O.Olw2 

(h/h0)2(Lx/LY) x/pß 
v9kLT/f 

hvLx 

hx/pk 
(2Ah/h0) x/pf 

1 

(Vi Sv) 
(0.01 9 Sv) 

(0.1 Sv) 

10 
1 

Notes 

Estimates in parentheses indicate exchange per "event" as distinct from a value per unit length of shelf. 

(1) An along-shelf average is estimated, but cascading is liable to be localised down shelf-edge depressions. 

(2) Tidal flows return only 6 hours later; the exchange may be only temporary. 

(3) No value is typical; that given is large but may occur locally. 

(4) Such values are localised to broad shelves such as the North Sea with an on-offshore canyon axis across the shelf width. However, canyons also 
facilitate many of the other processes and increase the length of shelf-edge boundary for exchange associated with slope currents and fronts. 
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Table 3. Circulation 

Process Scale e.g., m s 

slope current forced by: 
JEBAR ho'lp-'Vplg/Sk 0.1 

steady wind T/pk 0.1 

unsteady wind^ ' tt/ph 0.1 

biased form drag (x/27tp) min(l/k, t/h) 0.01 

wave rectification*- ' u2f/LTa
2 0.01 

eddy momentum uvh/Lyk 0.1 

western boundary current (Lx/LY)x/pki 1 

eddies, warm-core rings, jets 7 0.5 

tides £ max{(g/h)1/2, cWs/h} 0.3 

in strait to marginal sea o^A/hb >1 

Notes 
(1) In the presence of seasonal stratification, the effective depth h will be that of the upper layer down to the thermocline, ie. less, so that the upper- 
layer current (only) is greater. 
(2) Internal motion, notably the internal tide, may reduce the effective length scale LT to (g'h')1/2/cr so that the rectified flow is locally greater. 

Overall, there are several agents of currents ~ 0.1 m/s,       instabilities manifested as eddies, warm-core rings and 
but in particular contexts  western  boundary currents,      jets, and tidal currents may be very much stronger. 

Table 4. Energy potentially available for mixing 

Process Scale W/mz 

surface waves 
or 

wind 

internal tides® 
internal waves 

bottom-reflected internal waves 
bottom friction 

tidal® (currents 0.3 or 0.7 m/s) 
canyon-intensified internal waves'3-* 

1.5 x 10"5 pgCTtyra 150 
5 x 10"7 pw3 500 
TV 10 

pg'<£2>X/Lx per tide 50 

0.1xlkW/m/LT 10 

fn(hx, f/N) x 30 mW m "2flux i 1 

pCDv3 3 
100 or 1000 

<pCdu3> 150 

Notes 
(1) No value is typical; that given is large but may occur locally. 
(2) These dissipation estimates correspond respectively to an average and to locally greater values for the northwest European shelf. 
(3) This estimate is local to the canyon floor where an empirical value 0.5 m s"1 is supposed for the intensified internal wave current. 

These values highlight the importance of waves for 
surface mixing, of internal motions for mixing in the 
interior, and the highly variable importance of tidal 
currents and internal waves near the bottom, according to 
context. 

Relation to Context 

The estimates in these tables depend on the context 
(e.g., shelf width Ws, depth h, slope hx, latitude through f, 
seasonality/N,   winds   through  T,   waves,   etc.).     This 
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dependence varies (e.g., some increase with Ws and others 
do not). Therefore the relative importance of different 
processes differs according to context. There is no one 
ranking of processes in order of importance. 
Paradoxically, the common estimate ~ 1 mV for 
exchange may assist ranking in a particular context where 
there is a departure from typical values. Wind-driven 
exchanges vary as x/f, for example, and are therefore 
larger in equatorial regions (for a given wind stress and 
appropriate direction) whilst tidal exchanges are even 
larger for a wider shelf. 

Discussion 

Flux estimated naively from measurements as <uC> is 
uncertain, owing to the need for a comprehensive yet 
intensive array in space and time. This derives from the 
geostrophic constraint on overall cross-slope flow, and 
hence a tendency for cross-slope flow to be relatively 
small in magnitude, with small time and space scales for 
structure and coherence. It is also necessary for the array 
to detect small correlations of u and C. 

An approach through process understanding is 
therefore suggested. Present knowledge of processes' 
contributions to fluxes has been reviewed. On this basis, a 
classification of shelves might be attempted, firstly on 
local physical grounds according to shelf width, depth etc. 
An assessment of processes' global contribution should 
then take into account the length of shelf where a process 
is important. 

Processes interact, and the ocean margin topography is 
complex. Therefore, it seems that numerical models must 
eventually be invoked to provide the sought-after 
synthesis over processes, time and space. 

Measurements are essential to test models. The 
sequence of hypothesis (embodied in a model) suggesting 
experimental arrays, and measurements in turn causing 
model revision, is the essence of the scientific method. In 
the shelf-edge context, the choice of the model area and 
the need to initialise the model place a critical demand on 
measurements around the boundary of the experiment. 
Other competing demands on the experimental array are 
the need for duration to provide statistics of intermittent 
processes, versus detail to define their form; a 
compromise may be detailed measurements for a shorter 
duration to add value to measurements from a sparser 
long-term array. 

Water-mass analysis provides a valuable complement 
to process studies in the form of an integrated (but 
uncontrolled) measure of cross-slope transport. Drogued 
buoys may provide an intermediate Lagrangian view, less 
integral but more controlled through the choice of 
deployment times and locations. 

Measurements may be wanted in a variety of locations 
so that individual processes are well-developed to test 

their representation by models; yet there is a case for 
locations to be representative of significant lengths of 
ocean margin. 

The developing interest in processes of shelf-ocean 
exchange, and the relationship between the nature of 
ageostrophy and the cross-slope structure of quasi- 
geostrophic flow, are reducing model resolution and the 
accompanying scale of required measurements to the 
internal deformation radius R„ and in the vertical to an 
emphasis near the sloping sea-floor. 

Model requirements on shelf-wide scales were 
discussed by Huthnance (1992). They include the 
representation of stratification, 3-D flow, friction, non- 
linear effects (notable for correct total friction and 
currents affecting slow waves) and forcing (wind, 
buoyancy) as appropriate, all with sufficient resolution in 
time and space. For finer-scale models, there are 
additional concerns. The model coordinates and 
advection scheme need to address simultaneously (i) the 
distribution of stratification and bathymetry such that the 
maximum of Nhx over the sea bed can be described, (ii) 
advection over the sloping bed, and (iii) dynamical 
balance of the JEBAR term and of initialising data. 

Although fine resolution is needed, shelf-edge models 
need to take account of phenomena in a large area; the 
extent of influence from 'upstream' may be 1000 km. 
This may be through open boundary conditions or 
embedding in a wider-area model. Either there are 
technical problems to be addressed in making the wider- 
area and nested models (two-way) interactive, or there is 
an intellectual challenge to finding 'off-line' open- 
boundary or matching conditions that are not interactive 
yet satisfy the needs of both the wider-area and fine shelf- 
edge models. One factor which may assist is that the 
distance 1000 km relates to the decay distance for a first 
mode coastal-trapped wave; if the large-area model has a 
good approximation to this (a relatively easy requirement 
on gross stratification and/or shelf/ocean depth ratio and 
shelf-slope widths) then the effect of poor boundary 
conditions in the fine model may relate only to higher 
modes and penetrate a much shorter distance before 
decay. 

Hence there remains full scope for application of the 
scientific method through models and experiments - the 
latter at sea, in the laboratory and with simpler models. 
The emphasis is on fine scales R, and near the sea bed, on 
the model grid in relation to stratification, bathymetry and 
advection, and on accounting for external influences in 
both experiment and model. In view of the prospective 
application of models, we have not attempted to be fully 
quantitative in estimating circulation, exchange transports 
and mixing rates. Rather, the aim has been to provide a 
basis for deciding what may be the important features and 
physics to include in a model of a chosen region, and the 
processes to be resolved in measurements to test models. 
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Table 5. Previous and planned studies 

Previous experiment 

Scotian Shelf 

SEEP-I 
SEEP-II 

Southern Atlantic Bight 

CODE (N California) 
Coastal Transition Zone 

Program 

Context contrast 

shelf-edge front 
strong T, S variations 

(cold air outbreaks) 
no slope current 
eddies from Gulf Stream 

shallow shelf 
Gulf Stream alongside 

narrow shelf 
strong wind-stress curl 
strong summer upwelling 

jets, filaments 
weak tides 

Conclusions 

long-period fluctuating 
transports 

stratification helps exchange 

dominance of GS changes 
associated upwelling 

large exchange (?) via 
upwelling & filaments 

affects production 
features tied to capes and 

ridges 

Concurrently 

SES (Hebrides, 1995-6) 

OMEX (Celtic Sea, 1993-6) 

MORENA (Portugal, 1993-6) 

Characteristics 

slope current 
strong wind forcing 

bends and canyon 
weak slope current 
narrow shelf 

separate coastal current 
some upwelling, cascading 

very wide shelf 
strong tides "upstream" 
summer upwelling, etc. 

OMEX (Ocean Margin Exchange) involves more than 
40 European partners spanning interests in physics, 
chemistry, biology, sediments and air-sea exchange. It 
includes the review of processes oulined here, and the 
following moorings and other deployments: 

- current meter moorings from June or December 1993; 
six over the southern Portugal slope and offshelf, four 
over the Goban Spur, and (from April 1994) three 
north-west of Ireland in 660 m water depth; 

- eleven drogued buoys over the slope off Portugal, 
deployed in December 1993, and possibly some more 
to be deployed over the Goban Spur; 

- CTD sections contributing to the EC Shelf Edge 
Fisheries and Oceanography Study, which is altogether 
collating 15-20 repeated cross-slope sections off 
Western Europe. 

OMEX also comprises remote sensing, and several 
modelling studies: internal waves, waves over the shelf 
and slope, ocean circulation and the eastern boundary, 
3-D prognostic hydrodynamic modelling of the OMEX 
study areas. There are also many studies in the other 
disciplines. 

SES (Shelf Edge Study, west of Scotland and part of 
the UK Land-Ocean Interaction Study) has the following 
measurement components: 

- initial extensive survey (March 1995) of bathymetry 
and the sea bed along the slope (side-scan sonar, 

coring) 

- six seasonal cruises (~ 3-monthly starting May 1995) 
with intensive surveys (ADCP, SeaSoar, CTD) and 
sampling (for chlorophyll, nutrients, tracers) 

- mooring array (some maintained for 18 months): one 
main cross-slope section near 56.4°N and a reduced 
array ~ 25 km along-slope to the north 

- tracking of instrumented drogued buoys 

- satellite remote sensing. 

SES is also funding studies of internal tides and waves; 
the along-slope current and its continuity; interpretation of 
the drogued buoy tracks for eddies, dispersion and 
exchange; ocean-shelf exchange by tracers/water mass; 
laboratory models (internal and long waves); 3-D 
prognostic numerical models; several studies in other 

disciplines. 
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Abstract. Roughly 20% of the shelf edge between Alaska and the Equator is interrupted by steep, narrow and 
abrupt submarine canyons. Such canyons have long been of interest to geological and biological oceanographers. 
Physical oceanographers have suggested that mixing, internal wave activity, upwelling and cross-shelf/slope 
transport are enhanced within submarine canyons and that waves may be generated or modified by the canyon 
topography. These processes may significantly affect mass balances on regional and even larger scales. For 
example, the existence of submarine canyons along the Pacific shelf edge provides up to 30% more coastline over 
which upwelling and/or mixing can occur. The state of our knowledge with respect to such processes is described 
in this paper and critical research areas are identified. 

Measurements in submarine canyons are among the most difficult in the ocean to make and, until recently, 
models of submarine canyon circulation and their effects on regional circulation have been few and highly 
idealized. Thus, understanding both the circulation within submarine canyons and the effect of canyons on the 
large-scale coastal circulation is yet a relatively immature field. Considerable progress has been made recently 
towards understanding the interaction of the steep topography of coastal canyons with time-dependent, stratified 
coastal circulation. This progress is due to the availability of measurements over canyon flanks (as opposed to 
simply along the axis) and to the development of models that include both realistically steep and abrupt 
topography as well as a canyon shape (as opposed to, e.g., a channel). Results indicate that for incident flow with 
the coastline on the left (upwelling-favorable), downwelling of shelf water occurs over the upstream wall of the 
canyon and upwelling typically occurs over the canyon axis and over the downstream wall. Upwelling water flows 
shoreward within the canyon and exits at the head and along its downstream wall. In the upper water column, with 
realistic stratification and inflow conditions, the flow is directed essentially straight over the canyon. Cyclonic 
relative vorticity occurs on the upstream side of the canyon near the rim and anticyclonic, over the canyon axis 
and on the downstream side. The cyclonic vorticity is associated with shelf water that has fallen into the canyon. 
Nonlinear effects tend to sweep spatial patterns downstream. The deeper circulation is cyclonic for upwelling- 
favorable incident flow (in the northern hemisphere), a result of layer stretching during upwelling. In the one 
canyon for which the data adequately resolve the spatial structure of the velocity field over the canyon, results 
suggest that a Taylor-cap-like circulation pattern occurs for Rossby numbers below about 0.25. Closed streamlines 
have not been observed in model results for the cases examined to date. Although models suggest that enhanced 
mixing due to internal wave focusing within canyons and wave generation and modification by canyons should be 
important, evidence for such processes is either extremely limited or nonexistent. 

Numerous questions remain. For example, under what circumstances is the circulation within a canyon closed? 
How does an incident flow with an undercurrent interact with a canyon? How does the specific shape of a canyon 
affect its interaction with the regional flow field? Are particles preferentially retained within canyons? How does 
the presence of a canyon impact the local and regional marine ecosystem? What is the effect of a canyon on 
regional mass and momentum balances? 

Background 

The shelf edge of many continental margins is 
interrupted at irregular intervals by submarine canyons. A 
typical coastal submarine canyon has scales similar to that 
of the Grand Canyon: -10-30 km wide and ~2 km deep. 
Canyons may cut across the shelf all the way to shore, or 
they may barely indent the outer shelf. Coastal canyons 
have long been of interest to geological and biological 
oceanographers. 

Measurements in submarine canyons are among the 
most difficult in the ocean to make. This is because most 
coastal canyons have extremely steep slopes, making it 
challenging   to   safely   obtain   CTD   profiles   and   to 

accurately deploy moored arrays over the slopes. Fishing 
activities often are intense over these same slopes so that 
it is difficult to maintain moored arrays in the water for 
extended periods. Last, the lateral coherence scales are 
very small—typically 10 km or less even along the canyon 
axis for both the monthly mean and the subtidal flow—so 
that arrays must be very heavily instrumented in order to 
delineate spatially coherent signals. Until recently, models 
of submarine canyon circulation and of the effect of 
canyons on the regional circulation have been few and 
highly idealized. For these reasons, the understanding of 
both the circulation within submarine canyons and the 
effect of canyons on the regional scale coastal circulation 
is a relatively immature field. 
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Fear of the complicating effects of submarine canyons 
has induced most researchers to make measurements 
outside their suspected range of influence. This was the 
case in the early 1970s and 1980s on the U.S. west coast 
when wind-driven dynamics were the focus of attention. 
In spite of purposeful selection against three-dimensional 
features, researchers usually failed to find two- 
dimensional mass balance. Consequently, during the 
1980s, even straighter shelf-edge topography was selected 
for most field studies. A few field studies of canyons took 
place during the late 1970s and early 1980s. However, 
these studies were performed either by or with geological 
oceanographers, with a mind-set towards axial processes 
in canyons; for example, turbidity flows (e.g., Shepard et 
al., 1979; Hickey et al., 1986; Noble and Butman, 1989). 
Therefore, instrumentation was placed primarily along 
canyon axes and below canyon rims. Recent studies 
indicate that much of the interesting canyon dynamics 
occurs over the flanks of a canyon and just above its rim 
(Hickey, 1995). 

Realistically shaped canyons have been given little 
attention by modelers. This omission may be due in part 
to the widely held idea that theories developed for a hill 
(which are comparatively numerous) can be applied 
directly to a depression. This is not the case, however, 
because boundary layers are free to communicate at all 
depths within a depression; for a hill or a seamount, 
communication can occur only over the top of the 
obstacle. Whereas the height of a hill is of fundamental 
importance to the effect of the hill on the regional flow 
field, the depth of a coastal canyon (beyond a minimum 
depth that depends on incident flow conditions) has only a 
small effect on the disturbance to the regional flow field. 
Moreover, the presence of the coastal wave guide 
introduces north-south asymmetries into the canyon-flow 
interactions. The additional complexities of having one 
open boundary, steep slopes, and abrupt changes in 
isobath orientation, as well as the existence of the strong 
and time-variable forcing that generally occurs in coastal 
regions where canyons are most common, make the 
problem particularly difficult. Early analytical models that 
included canyon topography typically made the 
assumption that the canyon could be considered as a 
perturbation to the regional topography; i.e., the canyon 
was extremely wide (Allen, 1976). Regional numerical 
models to date have provided insufficient spatial 
resolution to address details of the interaction processes. 
However, such models have demonstrated that canyons 
affect the spatial patterns of regional upwelling; in 
particular, they suggest that upwelling is enhanced on the 
downstream side of a canyon (e.g., Hurlburt, 1974; 
Peffley and O'Brien, 1976). 

In the first attempts at modeling canyon circulation and 
its interaction with shelf flow on more realistic scales, the 
canyon was simulated as a vertical-walled channel (i.e., 

without a closed end) (Klinck, 1988, 1989). In spite of the 
absence of a canyon headwall, the latter models provided 
the first useful insight into canyon/flow interaction. Two- 
and three-layer linear models were used to describe the 
steady state response of the canyon flow and density field 
for channel widths narrower, wider, and on the order of 
the Rossby radius. The incident forcing had a sinusoidal 
cross-shelf structure. With this model configuration, 
maximum upwelling occurred over the two walls and no 
north-south asymmetries were predicted. Cyclonic 
vorticity was observed within the canyon in the region 
where the incident flow was upwelling favorable. 

Two recent models with realistically steep and abrupt 
topography have provided a major step forward in 
understanding the interaction of shelf flow with coastal 
canyons (Allen, 1995; Klinck, 1995). Results from these 
models are qualitatively consistent with the one set of 
spatially comprehensive observations that is available. 
These models as well as the spatially comprehensive 
dataset will be discussed further in the section on the 
current state of our knowledge in submarine canyons. 

Why are Canyons of Interest? 

In some coastal areas, submarine canyons occupy 
nearly 50% of the shelf edge. An example of such a 
coastline is shown in Figure 1. The interaction of 
fluctuating flows over the shelf and slope with abrupt 
topographies such as these, i.e., the nature of the 
circulation and mass balance within and in the immediate 
vicinity of a canyon, presents a fundamental and 
challenging problem for physical oceanographers. 
Moreover, canyons play an important role in regional 
ecosystems. A plethora of anecdotal information suggests 
that canyons are regions of enhanced species diversity and 
biological productivity. This productivity enhancement 
apparently extends all the way up the food chain to 
include birds and mammals. For example, The Gully, a 
1200-m-deep, 12-km-wide submarine canyon off the 
Scotian shelf, is home to a non-migratory population of 
200-300 endangered bottlenose whales (Faucher and 
Whitehead, 1992). Elevated chlorophyll and Zooplankton 
density, as well as doming of temperature and salinity 
isopleths, have been observed over this canyon (Bohrer, 
1995). The basic hypothesis invoked in most anecdotal 
accounts is that upwelling is enhanced near canyons and 
that this upwelling provides a nutrient source that 
increases phytoplankton and, hence, Zooplankton density. 
Fish, birds, and mammals congregate in the area for the 
predictable and enhanced source of food. Most reports 
linking canyons to enhanced productivity have not been 
presented in the reviewed literature. The studies have not 
to date included specific efforts to link physical 
mechanisms and biological effects. 
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Figure 1. Bathymetric map of the 
Washington-Oregon coast illustrating the 
number and frequency of submarine canyons. 
The inset figure shows the method used for 
estimating the canyon shelf-edge 
enhancement factor. 
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Submarine canyons incising the continental shelf also play 
an important role in the ultimate fate of sediment in 
suspension or resuspended over the continental shelf. 
Many canyons incise the shelf sufficiently far to cut across 
and thereby interrupt the movement of river-supplied 
sediment along the shelf in the bottom boundary layer. For 
example, on the Washington shelf, sediments trend 
northward and offshore from their source, the Columbia 
River, intersecting several canyons along the outer shelf 
from Astoria to Juan de Fuca (see Figure 1) (Nittrouer, 
1978). Baker and Hickey (1986) used sediment traps to 
demonstrate that particles are preferentially concentrated 
in a canyon following resuspension on the adjacent shelf. 
Water flowing over the canyon, as opposed to around the 
canyon, provides an opportunity for suspended sediment 
in the water column to settle out at depths deeper than 
would be otherwise possible. Gardner (1989) shows that 

focusing of internal waves by canyon walls can elevate 
bottom currents and hence shear stress sufficiently to 
resuspend sediment along the canyon floor, after which it 
can move farther seaward in detached nepheloid layers. 

On a regional scale, the presence of coastal submarine 
canyons can modify and/or enhance the effects of other 
physical processes. A number of possibilities are listed 
below. These effects have some basis in model studies. 
However, only a few have been studied in the field. The 
state of our knowledge in each of these areas will be 
reviewed briefly in the next section. 

1. Internal Wave Generation and Modification. The 
topography of a canyon, with sloping bottoms on three 
sides, is likely to significantly modify the ambient internal 
wave field. In addition, bottom slopes within the canyon 
generally differ from those over the continental slope 
outside the canyon, and offer several angles, any one of 
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which might be favorable to generation of the internal 
tide. 

2. Enhanced Mixing. Modification of the internal wave 
field, in particular, amplification and breaking, could lead 
to enhanced mixing within and around canyons. Enhanced 
mixing might also result from an increase in bottom shear 
stress as the flow is steered around the topography. 

3. Wave Generation. The interaction of fluctuating 
shelf flow with the abrupt topography of canyons is likely 
to result in the generation of a spectrum of trapped and 
propagating waves. 

4. Modification of Coastal-Trapped Waves. The 
energy of low mode coastal-trapped waves commonly 
found on continental shelves may be scattered into higher 
modes by the abrupt change in bottom topography. 

5. Shelf/Slope Mass Exchange. Upwelling and 
downwelling rates and/or the total volume exchanged via 
these processes may be altered or enhanced by the 
presence of a canyon. 

6. Modification of Regional Currents and Water 
Properties. For realistic ambient conditions, shelf flow 
does not simply follow isobaths around a canyon 
indenting the shelf break. Rather, flow crosses the 
isobaths into the canyon. The departure of streamlines 
from the isobaths is a function of many parameters 
(notably stratification and Rossby number of the incident 
flow) which vary in space and time. Also, water masses 
produced and/or modified by canyon processes are not 
constrained to remain in the vicinity of the canyon. 
Advection and mixing can move the canyon water 
downstream and inshore or offshore of the canyon from 
which it originated, thereby affecting regional salt, heat 
and mass balances in a fundamental way. 

How important are any of the expected canyon 
transformations and enhancements in regional and global 
contexts? On the west coast of the U.S., the shelf break 
occurs generally in the vicinity of the 200-m isobath. To 
estimate cumulative canyon effects over one specific shelf 
region, we measured the overall length of the 200-m 
isobath (L), the length of the 200-m isobath indented by 
the mouths of canyons (Lm = ZL'm) and the length of the 
200-m isobath including canyons (Lc) for the Pacific coast 
from Alaska to the Equator (Figure 1). Distances were 
measured with a ruler whose least division is about 2 km. 
Results indicate that in this region, almost 20% of the 
shelf edge is interrupted by canyons; i.e., the mouths of 
canyons occupy 20% of the shelf edge (100 Lm IL). In 
addition, the presence of canyons increases the length of 
the shelf edge by roughly 30% (100 Lc IL). Thus, if 
canyons do indeed facilitate exchange between the shelf 
and the slope or enhance vertical mixing, this example 
suggests that presence of canyons is likely of first order 
importance to larger scale mass balances. 

In the discussion below, the state of our knowledge 
with respect to mean flow and fluctuating flow in and 
around canyons will be presented. This will be followed 

by a discussion of each of the potential canyon effects that 
were listed above. 

The State of Current Knowledge 

Mean Flow Within Submarine Canyons 

Observations suggest that the mean flow along canyon 
axes within a few hundred meters of the canyon floor is 
predominantly up- or down-canyon. This axial canyon 
flow is of great interest to geological oceanographers, who 
view it as a mechanism for transporting sediment from the 
upper slope to the deep sea. Long term (several month) 
mean currents along canyon axes do not appear to 
correspond to any simple spatial pattern: they are 
sometimes up-canyon, and sometimes down-canyon, often 
within the same canyon. For example, Hunkins (1988) 
found mean down-canyon flow in Baltimore Canyon in 
the canyon head, but up-canyon flow farther seaward. 
Hickey (1989) found up-canyon flow in the head of 
Quinault Canyon. Shepard et al. (1979) conclude that of 
69 measurements of axial flow, 43 were down-canyon and 
26 were up-canyon. They also make the observation that 
canyons on the east coast of the U.S. (i.e., in a western 
boundary system) tend to have more up-canyon mean flow 
than West coast canyons (i.e., in an eastern boundary 
system). However, presently available data now suggest 
the opposite: Quinault (Hickey, 1989) and Juan de Fuca 
(Freeland and Denman, 1982, hydrographic data) suggest 
up-canyon flow at least at the head; whereas, Baltimore, 
Lydonia (Noble and Butman, 1989), and Wilmington 
(Church et al., 1984, from hydrographic data) all suggest 
down-canyon flow at the head. The observations have 
been made over different time periods and in different 
seasons, at different heights above the bottom and in 
different parts of canyons. Not surprisingly, therefore, no 
firm understanding of driving mechanisms for mean flow 
near the canyon floor has emerged. It is safe to say that at 
this point in time, the direction of the mean flow above the 
floor of a specific canyon cannot be predicted with any 
reasonable certainty. To what extent are the mean flows 
obtained repeatable from year to year? In the one case for 
which data exist (Quinault), the spatial pattern of the mean 
flow direction along the canyon axis was the same during 
two successive years (Hickey et al., 1986). 

Few direct current measurements have been made over 
the canyon flanks: to my knowledge such data exist only 
for Astoria, Lydonia, and Baltimore. In all cases for which 
such data have been obtained, a cyclonic flow pattern is 
observed within the canyon over its edges. For example, 
data from the head of Lydonia Canyon provide evidence 
that the mean flow of that canyon is in opposite directions 
on the two sides and cyclonic (Noble and Butman, 1989). 
In Baltimore Canyon, the only available data are deep, but 
they too indicate cyclonic mean flow with flow in opposite 
directions on the two canyon walls (Hunkins, 1988). Data 
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in Juan de Fuca Canyon are consistent with a mean 
cyclonic circulation pattern (Cannon and Lagerloef, 
1983). With the exception of the Juan de Fuca data, all 
examples were obtained for incident flow with the 
coastline on the right (i.e., downwelling-favorable). The 
data sets generally included at most one mooring near the 
shelf break upstream and downstream of the canyon and 
one in the canyon. With such sparse data it is not possible 
to determine whether the flow is conserving vorticity and 
simply following the isobaths around the canyon, or 
whether the water column has crossed isobaths into deeper 
water, thereby generating cyclonic relative vorticity as it is 
forced to stretch. This determination is easier in the case 
of flow incident with the coast on the left (i.e., upwelling- 
favorable). In such cases, if the flow is sufficiently slow to 
be able to follow the isobaths, the data that would result 
from two moorings on either side of the canyon would 
suggest an anticyclonic rather than a cyclonic flow 
pattern. 

In the one data set that resolves flow over both the 
canyon axis and its slopes (Astoria) the flow crosses 
directly over the isobaths on the upstream side of the 
canyon to form a mean cyclonic eddy, with maximum 
velocities over the canyon walls (Hickey, 1995). Under 
strong incident flow conditions (Rossby number >0.25), 
the cyclonic eddy disappears from the canyon. This 
Taylor-cap-like feature decays vertically both above and 
below the canyon lip, with a scale roughly given by the 
vertical length scale appropriate for geostrophic flow, 
flJN, where / is the Coriolis parameter, L is the canyon 
width and N is the Väisälä-Brunt frequency. Since the 
width of Astoria Canyon is less than half that of the local 
internal Rossby radius, the observed flow is unlikely to be 
completely geostrophic. In some locations where Astoria 
data were obtained, the canyon walls were only 3 km 
apart. For the cases for which appropriate data are 
available (Astoria, Quinault, Baltimore, Lydonia, and 
Carson), mean flow at some distance (-50-100 m) above 
the canyon over its walls was not measurably perturbed by 
the canyon: it was directed straight over the canyon 
following the curvature of the regional isobaths. 

The only observations available on canyon floors have 
been made along canyon axes. Such flows are generally 
weak (<5 cm s"1). Whether the flow over the canyon floors 
is unidirectional to some height off the bottom or whether 
the flow is in opposite directions over the canyon flanks 
right down to the canyon floor is presently unknown. Most 
canyons narrow continuously towards the bottom rather 
than being flat over a broad region (i.e., over several 
kilometers), so that at some distance from the sea surface 
the flow might be unable to follow isobaths around the 
edges. Although the depth at which the flow would 
transition to such a regime might be thought to depend on 
the local internal Rossby radius, flow has been observed 
to follow the isobaths around at least one canyon at 
distances  much  less  than  the  internal  Rossby  radius 

(Hickey, 1995). Model results also suggest that, in the 
absence of friction, flow can be oppositely directed on the 
two sides of a canyon for canyons much narrower than the 
Rossby radius (Klinck, 1988). It seems likely that bottom 
friction might play an important role in determining near- 
bottom canyon flow. The physics of the near bottom flow 
in deep canyons, and, in particular, the transition from 
around-canyon flow to axial flow (if such indeed occurs), 
has not been addressed to date with either models or 
observations. 

Fluctuations in Canyon Currents and Water Properties 

Statistics and forcing mechanisms of subtidal currents 
in deep submarine canyons (arbitrarily defined as those 
for which bottom depths exceed 200 m) have only been 
examined in four studies. In each case, horizontal 
coherence scales, both along and across the canyon axis, 
are remarkably small (less than 10-20 km) (Hickey, 1989; 
Noble and Butman, 1989). Typically, only a small fraction 
(<25%) of the variance has been explained by 
conventional statistical analysis (Hickey, 1989; Noble and 
Butman, 1989). The cross-shelf/slope pressure gradient 
associated with the along-shelf/slope regional flow 
incident on or over the canyon is most frequently invoked 
in discussions of driving mechanisms, with an offshore 
increase in pressure being related to up-canyon flow, and 
vice versa for an onshore increase in pressure. For 
example, Cannon and Lagerloef (1983) illustrate out- 
canyon flow in the Juan de Fuca Canyon for downwelling- 
favorable flow conditions. Hickey (1989) demonstrates a 
statistical relationship between along-axis flow in 
Quinault Canyon at depths of about 1200 m from the 
surface (5-50 m above the bottom) and the along-shelf 
flow over the canyon (near the shelf edge). Noble and 
Butman (1989) illustrate that for these dynamics to apply 
to Lydonia Canyon, dissipation must be extremely high, 
consistent with estimates deduced from the large tidal 
currents that are present. For both Quinault and Lydonia 
Canyons, maximum coherence with the shelf forcing 
occurs at periods of about 3-5 days. In the shallow heads 
of some canyons or in shelf valleys such as the Hudson, 
wind set-up (and thus a cross-shelf pressure gradient 
force) has been related directly to down-canyon flow (e.g., 
Nelson et al., 1978; Hsueh, 1980). Coherence scales for 
such depressions might be expected to be larger than those 
for deep ("real") canyons, which lie below the depth of 
directly wind-driven shelf currents. 

With adequate resolution on the canyon edges, results 
show that the fluctuating flow on the two sides of the 
canyon is often in opposite directions (Hickey, 1995; 
Kinsella et al., 1987). Consequently, the flow cannot be 
driven by a spatially uniform regional pressure gradient, 
as deduced from the several data sets which emphasize 
axial measurement sites. A sequential time series 
illustrating the changes in the velocity field during an 
upwelling event in Astoria Canyon is pres ated in Figure 
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2. Detailed analysis of the Astoria dataset demonstrates 
that during an upwelling event, up-canyon flow initially 
occurs below the canyon lip on both walls and over the 
axis. This flow is likely to be driven directly by the 
barotropic cross-shelf/slope pressure gradient associated 
with the overlying incident shelf flow, as reported in the 
other canyons (Hickey, 1995). Over the canyon walls, the 
up- (or down-) canyon flow that occurs at the onset of 
upwelling (or downwelling) is followed by an increase in 
cyclonic circulation (with flow in opposite directions on 
the two walls). This cyclonic circulation is consistent with 
stretching (or compression) of upwelled (downwelled) 
layers as these layers drop into the canyon. An example of 
layer stretching is illustrated in Figure 3. In this figure, 
recently upwelled layers of shelf water can be traced as a 
turbid layer across the canyon. The maximum in turbidity 
coincides with the maximum in stretching vorticity. 

Deeper in the canyon, layer stretching due to the 
upwelling itself causes an additional increase in cyclonic 
vorticity (Figure 3). Note that the region of large positive 
vorticity near the rim of the canyon is sandwiched 
between two layers of strong anticyclonic vorticity, a 
result of layer compression by the regional upwelling. 
Current meter data in Carson Canyon off the coast of 
Newfoundland suggest a response to an upwelling event 
not unlike that in Astoria Canyon: a strong cyclonic 
circulation pattern is observed 2-3 days after the onset of 
upwelling. In this case, the direction of the flow at the 
shelf break on the two sides of the canyon is the reverse of 
that normally observed for mean conditions on this 
western boundary. 

Figure 2. Sequential maps of subtidal vector velocities in 
Astoria Canyon during an upwelling event. Measurement depth 
in meters is indicated near the tip of each vector. Locations 
above (below) the depth of the canyon rim are shown as solid 
(dashed) arrows. From Hickey (1995). 
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Figure 3. Contoured sections of 
temperature, attenuation and 
stretching vorticity on a section 
across Astoria Canyon during an 
upwelling event. The shaded 
region near the canyon lip traces 
the pathway of water that 
originated from the bottom 
boundary layer on the shelf or 
upper slope as it flows over and 
up the canyon. The deeper region 
of shaded vorticity is consistent 
with layer stretching during the 
upwelling event. Adapted from 
Hickey (1995). 
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Figure 4. Modeled velocity and vorticity fields for upper, middle, and lower layers after one day of spin-up with a nonlinear 
numerical model. The model is forced with steady, upwelling-favorable, spatially uniform wind stress. Maximum velocities in the 
three layers are 47 cm s"1 (upper layer), 37 cm s"1 (middle layer) and 14 cm s"1 (lower layer). Vorticity is contoured from -0.11 /to 
0.062/by 0.025 f (upper layer), -0.43/to 0.43/by 0.12/(middle layer) and 0/to 0.19/by 0.062/(lower layer). From Allen 
(1995). 
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A recent study of submarine canyon dynamics includes 
both spin-up and steady state, linear and nonlinear models 
of a shelf/slope system in which a vertical-walled canyon 
incises the continental slope (Allen, 1995). One nonlinear, 
three layer model run was designed for the topography 
and stratification of Astoria Canyon. The relatively large 
incident velocity (-50 cm s"1) approximates the high 
Rossby number flow observed in the Astoria field study 
during upwelling events. In the upper water column the 
flow is essentially straight over the canyon. In the middle 
layer, the flow turns shoreward over the canyon. Cyclonic 
vorticity occurs on the upstream side of the canyon near 
the rim and anticyclonic on the downstream side (Figure 
4). The cyclonic vorticity is associated with shelf water 
which has fallen into the canyon, consistent with the field 
observations of Astoria Canyon (Figure 3). Cyclonic 
vorticity occurs over about 2/3 of the canyon due to the 
relatively large inflow velocity and the relatively 
important nonlinear effects, which tend to sweep spatial 
patterns downstream. The deeper circulation is cyclonic 
near the canyon head in the model results, consistent with 
the observations, a result of layer stretching during 
upwelling. However, modeled vorticity is generally 
weaker than that observed in the field study of Astoria 
Canyon (compare Figures 3 and 4). The model- 
observation discrepancy may be due to the fact that the 
model results are presented after only one day of spin-up, 
whereas the observations suggest that maximum cyclonic 
circulation is observed during spin-down. 

Klinck (1995) uses a semi-spectral, primitive equation 
model (the "SPEM" or "Haidvogel" model) to model the 
steady state response of a Gaussian canyon (400 m deep 
and with a half-width of 5 km) to both upwelling and 
downwelling-favorable overflow events. Klinck uses 
stratifications corresponding to an internal Rossby radius 
on the order of the canyon width and three times the 
canyon width. The Rossby number of his incident flow is 
0.1-0.2. The major result of his study is the demonstration 
that the direction of incident flow (i.e., whether upwelling- 
favorable or downwelling-favorable) has a stronger effect 
on the flow disturbance due to the canyon than does 
stratification. In particular, during upwelling events, 
downwelling of shelf water occurs over the northern flank 
of the canyon and upwelling occurs over the canyon axis 
and over the southern flank (Figure 5). Upwelling water is 
pumped from the canyon, exiting at the head and along its 
southern flank. These results are qualitatively similar to 
observations in Astoria Canyon, as discussed above (see 
Figure 3). For strong stratification, the canyon effects 
(including the downwelling) are observed well up over the 
adjacent shelves. Flow is directed over the canyon at the 
sea surface, but turns into the canyon at depths close to the 
canyon rim. Cyclonic vorticity occurs at depth within the 

canyon due to layer stretching. For downwellingfavorable 
overflow, downwelling (on the upstream side) and 
upwelling (on the downstream side) are symmetric with 
the canyon topography and little water is lost from the 
shelf to the canyon (Figure 5). 

Internal Wave Modification and Generation by a 
Submarine Canyon 

Both models and laboratory experiments suggest that 
internal waves are focused and therefore amplified within 
canyons (Hotchkiss and Wunsch, 1982; Baines, 1983; 
Grimshaw et al., 1985). This result has been confirmed in 
several canyons, notably Hudson (Hotchkiss and Wunsch, 
1982), Quinault (Hickey, 1989) and Monterey (Petruncio 
et al, 1994). Hotchkiss and Wunsch use statistical 
analysis of current meter data to illustrate the 
enhancement of the internal wave field toward the canyon 
head and toward its floor (Figure 6). The potential energy 
density averaged over the internal wave band increases 
roughly 100-fold toward the canyon head and 10-fold 
toward the bottom at most sites. The energy in the internal 
wave band is higher everywhere in the canyon where 
measurements were made than that predicted by the 
Garrett and Munk (1975) model (see values on Figure 6). 

Petruncio et al. (1994) use a time series of shipboard 
ADCP data to demonstrate bottom enhancement of the 
semi-diurnal tide within Monterey Canyon. In this canyon, 
the slope of the canyon axis is near the critical slope for 
the semi-diurnal tide. This enhancement would not be 
expected on the much steeper adjacent continental slope. 
Their data also suggest that the internal tide undergoes 
significant alteration near the lip of the canyon. In general, 
the slopes of the canyon walls and the canyon floor can all 
differ from each other and from those on the adjacent 
continental slope, and so offer multiple opportunities to 
achieve the critical angle required for effective generation 
of internal tides. 

Enhancement of Vertical Mixing by Submarine 
Canyons 

Lueck and Osborn (1985) use turbulent velocity 
profiles to demonstrate that Monterey Submarine Canyon 
has an extremely turbulent bottom boundary layer. This 
turbulent layer was up to 170 m thick during their field 
study. The production of turbulent kinetic energy within a 
canyon could be related either to internal wave breaking 
or to bottom friction (or both). Hotchkiss and Wunsch 
(1982) use their energy analysis of the internal wave band 
to show that in Hudson Canyon, dissipation due to bottom 
friction is a factor of ten too small in the internal wave 
band to account for the influx of internal wave energy into 
the canyon. They suggest that internal 
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wave breaking and mixing likely occur near the 
canyon head. An example of mixing due to bores 
or wave breaking at internal tidal frequencies is 
presented by Gardner (1989). Time series of 
currents, temperature and beam attenuation within 
Baltimore Canyon are consistent with the 
hypothesis that bore-like features (breaking 
internal waves) resuspend sediment along the 
canyon bottom at tidal frequencies. The ratio of 
bottom slope to the slope of the internal tide 
characteristics is less than one, as required for 
internal wave breaking or bores, in the season in 
which the observed resuspension was most intense. 
Sediment-laden water moves up-canyon and then 
down-canyon, ultimately detaching from the 
bottom boundary layer and moving offshore as 
intermediate nepheloid layers. Maps of light 
transmission taken inside and outside Baltimore 
Canyon illustrate the resulting enhancement of 
suspended particle concentrations within the 
canyon in comparison with the open slope (Figure 
7). 

A recent study has shown that the thickness of 
the bottom mixed layer over the shelf off northern 
California is a function of stratification, current 
speed, and, most importantly, current direction 
(Lentz and Trowbridge, 1991). To the extent that 
this is generally the case, the height and structure 
of the bottom mixed layer in the vicinity of a 
canyon are likely to be strongly modified by 
canyon-related processes. For example, if the flow 
can follow the topography, conservation of mass 
would require an increase in velocity as the flow is 
channeled into the narrower shelf region inshore of 
the canyon. This would increase the bottom shear 
stress and, consequently, the structure of the 
bottom boundary layer and the height of the 
bottom mixed layer. The local density field, itself 
modified by the canyon effects on 
upwelling/downwelling and other regional 
processes, would also affect the structure of the 
bottom boundary layer and, hence, the bottom 
mixed layer. To my knowledge, there have been 
no field studies focused on boundary layer 
modification and mixing enhancement due to the 
presence of a submarine canyon for any frequency 
band. 

Strongly Stratified, Up welling 
Vertical Speed (1CT6 m s"1) 

Depth: 105 m Time: 10 davs 

Strongly Stratified, Downwelling 
Vertical Speed (1(T6 m s"1) 

Depth: 105 m Time: 10 days 

15.e 20.0 25.0 30.0 
Kilometers. 

Contour Interval: 50 x 10"6 m s_1 

Figure 5. Modeled velocity for strongly stratified upwelling (upper panel) 
and downwelling (lower panel). The solid line indicates the top of the canyon 
and the shelf break. The vertical velocity is shown at a depth just below the 
shelf break (105 m). Solid contours indicate upward flow and dashed controus, 
downward flow. From Klinck (1995). 
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Canyons as Wave Makers and Wave Modifiers 

The theoretical problem of variable shelf-slope 
topography was first addressed by Allen (1976). Along- 
shelf variations in topography were assumed to be greater 
than the shelf-slope width so that the motion could be 
treated in the long wave, non-dispersive limit. The 
resulting perturbation equations are those for barotropic, 
inviscid shelf waves. For a delta function applied wind 
stress (meant to model short time scale changes in stress), 
the flow adjusts through propagation of free shelf waves. 
For a Heaviside wind stress (meant to simulate steady 
stress, impulsively applied), Allen found a reduction of 
onshore flow over the canyon. This result is exactly the 
opposite of that found in recent models in which canyons 
are treated as abrupt topographic features (see below). 
Allen also showed that the energy in a shelf wave incident 
on a canyon is scattered into other modes. 

Wang (1980) extended the study of the effects of a 
canyon on shelf waves by including finite amplitude 
topography and allowing waves to be dispersive. He 
presents numerical solutions for the case of a v-shaped 
canyon that indents the shelf all the way to the coastline, 
with a flat bottom seaward of the shelf. He concludes that 
wave diffraction leads to a reduction of long wave energy 
transmission (up to 70%), amplitude amplification near 
the canyon, and generation of strong localized 
disturbances in the vicinity of the canyon. Interestingly, 
the phase propagation upstream and downstream of the 
canyon is not significantly affected by the presence of the 
canyon. The scattering process transforms the large-scale 
alongshore motion into smaller-scale cross-shore motion 
associated with higher wave modes. Thus, Wang 
concludes that canyons effectively block much of the long 
wave transmission. We note that this would not likely be 
the case for submarine canyons that only partially indent 
the shelf. Perhaps more important, numerical studies of 
coastal-trapped wave modification by abrupt changes in 
shelf topography (Wilkin and Chapman, 1990) suggest 
that Wang's results would be altered dramatically by the 
inclusion of stratification. In the latter study, inclusion of 
realistic stratification eliminated all reflected waves and 
amplified the scattering process. Some upstream 
influences were produced by evanescent wave modes. No 
further numerical studies of wave modification by finite 
amplitude canyons have been presented since Wang 
(1980). 

Generation of standing and radiating waves over and 
near a canyon at supertidal frequencies and at the inertial 
period has been examined for a homogeneous water 
column with a canyon treated as a channel (Klinck, 1988). 
Waves are generated during geostrophic adjustment to an 
impulsively imposed cross-shelf barotropic pressure 
gradient. The frequency of the resulting waves is a 
function of canyon depth and the width of the incident 
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Figure 6. Horizontal kinetic energy density (upper panel) and 
potential energy density (lower panel) integrated over the 
internal wave band, shown as a function of location within the 
canyon. From Hotchkiss and Wunsch (1982). 

flow. Strong localized disturbances at these higher 
frequencies would be expected in the vicinity of a canyon. 

To my knowledge, no experiment has been designed to 
search for wave-like disturbances over a canyon and no 
experiments have been undertaken to study the 
modification of coastal-trapped waves by canyon 
topography. Although regional effects on coastal-trapped 
waves by small scale canyons may be negligible, the effect 
of broader canyons, which may cause an abrupt narrowing 
of the shelf for a distance of 20-100 km is unclear. 
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Figure 7. Contoured beam attenuation (m1) along sections northeast of Baltimore Canyon and along the canyon axis. 
Contour intervals are 0.1 m"1 for values greater than 0.4 m"1 (stippled area) and 0.01 m"1 for values less than 0.4 m"1. The 
heavy dotted line indicates the outline of the canyon walls. From Gardner (1989). 

The Effect of Canyons on Shelf/Slope Mass Exchange 

Church et al. (1984) conclude that shelf-slope exchange 
is modified by a canyon on the east coast of the U.S. Their 
data include hydrographic/nutrient/oxygen measurements 
obtained on a shipboard survey of the shelf and slope in a 
region including Wilmington Canyon. Their results 
suggest that the cyclonic circulation pattern observed at 
that time in the vicinity of the canyon promoted nutrient 
exchange and biological production. The authors suggest 
that more direct and time-dependent measurements would 

be necessary to fully  understand the  nature  of such 
interactions. 

Regional models suggest that upwelling is enhanced on 
the downstream side of canyons (Peffley and O'Brien, 
1976; Cushman-Roisin and O'Brien, 1983). The finer 
resolution models of realistic canyons described in the 
preceding section also suggest that upwelling is enhanced 
on the downstream side of a canyon (Allen, 1995; Klinck, 
1995). Onshore flow and upwelling rates are as much as a 
factor of ten stronger within the canyon than over the 
nearby continental slopes (Allen, 1995) and the upwelled 
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water is lifted out of the canyon at the head and along the 
downstream edge (Figure 5). Little spatial asymmetry 
occurs in the case of downwelling, at least in the steady 
state model (Figure 5) (Klinck, 1995). Thus, one might 
expect to more readily observe dramatic canyon effects on 
regional water properties in areas and seasons in which 
upwelling is dominant. Klinck's (1989) model for the flow 
within a coastal channel suggests that strong density 
disturbances can occur even for canyons much narrower 
than the internal Rossby radius. 

An example of enhanced upwelling on the downstream 
side of a canyon was obtained in the field study of Astoria 
Canyon (Figure 3). Data in Shaffer (1976) are also 
suggestive of localized upwelling near the head of a 
canyon off the African coast. Time series of temperature 
data within Quinault Canyon and on the nearby slope 
illustrate that the canyon upwelling is stronger during each 
individual upwelling event (Hickey, 1989). To my 
knowledge no such explicit examples have been presented 
for canyons in western boundary systems, on which wind- 
driven upwelling is less common. 

Whether upwelled water actually breaks the surface 
above or near the canyon is a question of great interest, 
particularly to biological oceanographers. Localized 
upwelling of nutrient-rich water into the euphotic zone 
would provide an explanation for enhanced Zooplankton 
biomass in the vicinity of some canyons. In Juan de Fuca 
Canyon, upwelled water reaches close enough to the 
surface to allow erosion by entrainment into the surface 
mixed layer (Freeland and Denman, 1982). However, the 
driving mechanism for this upwelling depends in part on 
the buoyantly driven coastal current associated with the 
effluent from the Strait of Juan de Fuca; this physical 
situation is unlikely to occur near most canyons. The 
majority of the data available as well as the recent model 
results for stratified situations suggest that upwelled water 
is likely confined to a bottom boundary layer in most 
cases. If a canyon cuts across the shelf sufficiently close to 
the coast to be within the coastal upwelling zone (a 
Rossby radius), water upwelled from the canyon might be 
upwelled further by upwelling near the coastal wall. 
Shaffer (1976) seems convinced that water upwelled from 
a canyon breaks the sea surface just shoreward of the 
canyon. However, the evidence as it is presented in his 
paper is far from conclusive. 

Rosenfeld et al. (1994) have recently demonstrated that 
during at least one coastal upwelling event, the cold 
surface water observed in Monterey Bay came from water 
upwelled outside the bay that was advected laterally into 
the bay. The upwelling plume passed straight over the 
canyon and was not connected to either the local coastline 
or the canyon in any way. The prevailing idea prior to this 
study was that upwelled water within Monterey Bay was 
due to the presence of Monterey Canyon. This example 
demonstrates that studies of canyon effects should always 
be done within a regional context. 

Modification    of    Regional    Currents    and    Water 
Properties by Submarine Canyons 

Regional circulation will attempt to follow the 
topography as it bends around the canyon at the shelf 
edge. How successfully it can do so will likely depend on 
stratification, vertical and horizontal structure of the 
incident flow, canyon width and the Rossby number of the 
incident flow. Canyon model studies to date have 
confirmed that the amount of steering is a function of both 
stratification and the Rossby number of the incident 
regional flow (Allen, 1995; Klinck, 1995). Steering of 
streamlines by canyon topography has been observed over 
a number of canyons. One example, obtained from 
hydrographic data off the coast of Spain, is shown in 
Figure 8 (Maso et al., 1991). The data illustrate that the 
degree of steering increases with proximity to the bottom. 
Likewise, over Astoria Canyon, direct current 
measurements show that whereas the flow 80 meters 
above bottom is not strongly affected by the canyon, the 
flow 50 meters above bottom is strongly affected by the 
topography (Hickey, 1995; and see Figure 3, this paper). 
A Rossby number dependence has been confirmed 
observationally by the Astoria data: the higher the Rossby 
number, the less the flow over the canyon turns to follow 
canyon isobaths (Hickey, 1995). 

The abruptness of the canyon topography, i.e., the 
angle between the incident flow and the canyon isobaths, 
would also be expected to have a significant effect on the 
resulting interaction between the incident flow and the 
canyon. The greater than 90° bend in local isobaths on the 
upstream side of Astoria Canyon (see Figure 3) may 
provide an explanation for the semi-permanent cyclonic 
circulation pattern observed above that canyon. A similar 
situation may occur near Carson Canyon (Kinsella et al., 
1987). In this case, the strongly bent isobaths are also on 
the upstream side of the canyon (for downwelling- 
favorable flow). The flow only 10 m above bottom passes 
directly across the local isobaths of Carson Canyon, 
making little attempt to follow the larger scale canyon 
curvature. 

The enhancement of upwelling on the downstream side 
of canyons must also affect regional flow patterns and 
mass balances. In particular, during upwelling events, 
significant quantities of water are pumped out of a 
canyon. This water is advected downstream and also 
inshore of the canyon. On the west coast of North 
America, canyons provide about 15% additional shelf 
edge for upwelling (assuming that upwelling occurs only 
on the downstream side of each canyon). If the canyon 
upwelling rate is only a factor of two greater than non- 
canyon regions (a very conservative estimate based on 
model results to date), a total of 30% more water would 
be upwelled along the shelf break in this region due to the 
existence of the canyons. Moreover, the greater the 
upwelling rate within the canyon in comparison with that 
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outside the canyon, the greater will be the water property 
anomaly on the shelf in the vicinity of the canyon. 
Localized fronts must occur within the bottom boundary 
layer, and these fronts, in turn, would be expected to cause 
spatial variations in the quasi-geostrophic, baroclinic flow 
patterns downstream and somewhat inshore of the canyon. 
The structure of the bottom boundary layer, which is a 
function of stratification, would also be expected to be 
affected by a nearby canyon. 

Another important feature of submarine canyons is that 
they can allow much deeper, nutrient-rich water to reach 
the nearshore zone than would otherwise be possible. If 
the canyon lies sufficiently close to the coast, the canyon- 
upwelled water might be further upwelled into the 
euphotic zone where it would become readily available to 
the biota. 

Critical Research Areas 
Considerable progress has been made within the last 

year in understanding the interaction of the abrupt and 
realistic topography of coastal canyons with time- 
dependent, stratified coastal circulation (Allen, 1995; 
Hickey, 1995; Klinck, 1995). For adequate verification in 
the field (Astoria Canyon), the effort required a 
combination of moored and shipboard surveys as well as 
the fortuitous occurrence of several strongly forced events 
during those surveys (Hickey, 1995). The models used 
appropriately   steep   and   abrupt   topography,   realistic 
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stratification and incident flow conditions, and a canyon 
that included a headwall on its nearshore end. The results 
of these studies indicate that during upwelling-favorable 
incident flow conditions, downwelling of shelf water 
occurs over the upstream wall of the canyon and 
upwelling occurs over the canyon axis and over the 
downstream wall. Upwelling water flows shoreward 
within the canyon and exits at the head and along its 
downstream wall. In the upper water column the flow is 
essentially straight over the canyon. Cyclonic vorticity 
occurs on the upstream side of the canyon near the rim, 
and anticyclonic, on the downstream side. The cyclonic 
vorticity is associated with shelf water which has fallen 
into the canyon. For realistic incident flows over Astoria 
Canyon, cyclonic vorticity is observed over about 2/3 of 
the canyon due to the relatively large inflow velocity and 
the consequently important nonlinear effects, which tend 
to sweep spatial patterns downstream. The deeper 
circulation is cyclonic, a result of layer stretching during 
upwelling. The data for Astoria Canyon suggest that a 
Taylor cap-like circulation pattern exists over this 
particular canyon for Rossby numbers below about 0.25. 
Closed streamlines have not been observed in model 
results for the cases examined to date. 

The research to date has addressed some 
straightforward questions, and qualitative agreement 
between models and observations has been obtained for 
simple incident flow and simple canyon shapes under 
strong forcing. Numerous questions remain. For example, 
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Figure 8. Dynamic topography relative to 100 db in the vicinity of several submarine canyons off the coast of Spain. From Maso et al. 

(1991). 
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as the canyon narrows towards its floor, does the flow 
change from primarily around the canyon walls (quasi- 
geostrophic) to primarily up and down its axis (quasi- 
frictional)? What is the role of side wall friction at various 
depths within the canyon? Model studies suggest that 
canyons may be energy sinks for barotropic shelf waves. 
How does a canyon affect wave scattering under stratified 
conditions? 

The extent to which a canyon can trap particles is 
particularly important to many interdisciplinary problems. 
Under what conditions does a vortex occur over the 
topography of a canyon? Under what conditions is the 
circulation within the canyon completely closed? How 
does a two layer flow (e.g., a coastal jet with an 
undercurrent over the slope) or a stratified flow interact 
with a steep canyon? The only spatially and temporally 
comprehensive data set is that for Astoria Canyon. To 
what extent is Astoria Canyon unique? The more than 
right angle bend in the shelf break isobaths north of this 
particular canyon may funnel the incident flow offshore 
near the apex of the bend. This could lead to a steady 
cyclonic vortex under all incident conditions as observed. 
In the real ocean, canyons have many shapes, depending 
on the geology of their formation. How does the shape of 
a canyon affect the details of its interaction with the 
coastal flows? These and other aspects of canyon 
circulation and canyon-flow interactions are the subject of 
ongoing research. 

Finally, we note that there is strong evidence to suggest 
that submarine canyons have an important effect on 
marine ecosystems. The effects include the entire food 
chain, from phytoplankton to marine mammals. The exact 
mechanisms for such effects have not been addressed to 
date. Future efforts in canyon studies would benefit 
greatly from an interdisciplinary approach. 
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Shelf Break Momentum Transport by Internal Waves Generated 
by Along-Slope Currents over Topography 

S.A. Thorpe, D. Jiang, and J.M. Keen 
Department of Oceanography, The University, Southampton, S09 5NH, UK 

Abstract. The along-slope currents flowing over topography of small, typically < 10 km, scale on the continental 
slopes produce internal lee waves with a predominant transfer of momentum towards shallower water, that is up 
the slope towards and across the shelf break and onto the continental shelf, at least when, in summer, stratification 
permits their propagation. Analytical results show that even when the lee waves at generation have a component of 
their group velocity directed towards deeper water, reflection at the sloping sea bed may lead to a turning towards 
shallower water. A numerical model is used to examine internal wave propagation and to quantify the flux of their 
momentum across the shelf break. The flux is usually dominated by the larger currents, greater stratification and 
rougher topography near the top of the slope, and, in conditions in which//iV« 1, is parameterised by a stress 
(momentum flux per unit vertical area along the shelf break) per unit length down-slope, t», given by 
T* = kp o VNh 2 cos 4 (ß + ß o), where p0 is the mean water density, V is the mean along-slope flow over the slope, 

iVis the buoyancy frequency in the vicinity of the shelf break,/is the Coriolis parameter, and h2 and ß are the 
mean square amplitude of the topography of wave number, /, such that VI/N < 1, and its mean orientation relative 
to the upslope direction, respectively. The constant ß0 is 7 ± 2°and estimates are for ß < about 60°. A working 
value of A: of about (9 ±4) x 10"6m"2is suggested, with values near 1.3 x 10"5m"2 when the topography is 
dominated by wavelengths less than 4nV/N, or 5 x 10"6 m"2 when they exceed 2QV/N. This flux represents a 
transfer of momentum to the shelf currents in a direction contrary to the current over the slope leading to the 
generation of the internal waves. Time-scales of about 5 days are associated with this transfer on 5° slopes with 
10-m-high topography when N = 10"2 s"1. 

1. Introduction 

The continental slopes are major topographic features 
of the surface of the solid Earth, being 4-5 km in height 
and extending for thousands of kilometres. They have 
great importance for the oceans. They are sites of 
upwelling, major fisheries, and generally a maximum 
(near 1 km depth) in biodiversity. They act as the natural 
boundaries for the circulation of waters deeper than about 
200 m (or more generally, the depth of the shelf-break) 
and they form the outer boundary of shelf-sea circulations. 
They are zones of exchange between the shelf seas and the 
deep ocean of water, particles and solutes, some of 
anthropogenic origin derived from land. Visual 
observations show in conditions of summer stratification 
the shelf break and slopes are often regions of intense 
internal wave activity (Apel et al., 1975; Baines, 1981; 
Fedorov and Ginzberg, 1986) and therefore sites at which, 
if anywhere in the surface ocean, internal wave effects on 
momentum flux may be significant. 

In some areas the tidal streams are directed with large 
components normal to the shelf break (or across the slope) 
and generate internal waves and soliton packets as 
explained, for example, by Maxworthy (1979; see also 
Hibiya, 1986, 1988; Huthnance, 1989; Lamb, 1994; 
Gerkema, 1994), but this is not generally the case, and the 
mean currents near the slope at depths greater than that of 
the shelf break are constrained by stratification and the 
Earth's rotation to flow approximately along isobaths. 

Many of the theoretical investigations cited ignore the 
variation of the continental slope along its length and 
assume two-dimensionality, whereas inspection of high 
resolution bathymetric charts of the continental slopes 
show them to be highly convoluted along their length, 
being cut by channels, rills, gullies and canyons of a 
variety of scales; below the shelf break the major variation 
in small-scale topography is generally in the along-slope 
direction and so the features lie normal to the mean 
current direction. 

Interaction between the mean along-slope flow and 
topography generates internal waves and hence a transfer 
of momentum into the internal wave field (Bretherton, 
1969). In the deep ocean the momentum associated with 
these waves is generally small; they are constrained to lie 
in a wavenumber band between f/U and N/U, where / is 
the Coriolis parameter, N is the buoyancy frequency, and 
U is the current speed, and this band is narrow since N/f is 
not large. Bell (1975) shows that it is indeed only small, 
about 300 m horizontal scale, topography, which is 
effective in generating internal waves in the deep ocean. 
However, as pointed out by Holloway (1992), N/f is 
relatively large in the upper ocean and, where topographic 
variability is large, as near the shelf break, internal wave 
drag may be important. 

This paper describes the transfer of momentum onto a 
continental shelf by internal waves generated by flow over 
the slope. It builds on an observation (Thorpe, 1992; see 
section 2.1 below) that the energy associated with internal 
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lee waves produced by flow along sloping topography has 
a bias toward shallow water, being carried by a 
preferentially positive component of group velocity up the 
slope and into shallower water, rather than towards deeper 
water, provided that the characteristics of the water mass 
allow for internal wave propagation to continue in this 
direction. This earlier work was based on analytical 
studies of waves in an infinitely deep ocean and in a fluid 
with a uniform and steady along-slope flow, V, and 
uniform buoyancy frequency, N, so that waves of any 
vertical scale could be generated, propagation was in 
straight rays, with the effects of surface reflection and 
subsequent bottom reflections largely ignored. We 
emphasise that, although concerned primarily with wave 
generation by the along-slope current, the full problem 
now to be addressed includes the possible subsequent 
reflection of waves from the sea bed, and in principle all 
the complexity of that much studied problem (see 
references above). Further progress by analytical methods 
appears unlikely to be very productive and therefore we 
have resorted instead to numerical studies (sections 3 and 
4) guided by further analysis (section 2), with the overall 
objective of deriving a parametric description of internal 
wave drag which might prove useful in numerical models 
of ocean or shelf-sea circulation. 

Such modelling of internal wave momentum transport 
and breaking in the atmosphere is relatively commonplace 
(see for example, McFarlane, 1987); internal wave drag is 
now recognised as having a large effect on the circulation 
(see for example Lilly, 1972; Palmer et al., 1986; Miller et 
al., 1989; Hoinka and Clark, 1991; Clark and Miller, 
1991). In the oceans, the drag contributes to the lateral 
boundary condition which should be applied to models of 
ocean circulation abutting the continental slopes; we are 
concerned with both the vertical flux of horizontal 
momentum and in the horizontal flux of horizontal 
momentum. In this examination of the effects of internal 
waves we shall only begin to probe the problem of 
describing the boundary conditions; a full solution 
demands study both near the boundary itself (where the 
waves are generated) and in the presently less-well-known 
regions where waves are dissipated. Our modest objective 
is to characterise the possible magnitude of the flux rather 
than to attempt to derive a formulation valid for all slopes, 
stratification, and flow structures. After all, if the flux is 
negligible there is little sense in estimating its destination. 
The parameterisation (see section 4) may require more 
observations at sea. 

The need to correctly describe the lateral boundary 
conditions on the velocity field in ocean circulation 
models is discussed by Ierley (1990); he stresses that the 
choice of conditions is particularly important because of 
the effect which they may have on the conservation (or 
otherwise) of potential vorticity. 

2. Analytical Results 

2.1. The Generation of Internal Lee Waves on a Slope 

Internal waves can be generated by the flow over 
topography on a slope. For simplicity we consider a 
uniform and steady flow, V, of a fluid with constant 
buoyancy frequency, N, parallel to the mean isobaths of a 
uniform slope, which is tilted at angle a to the horizontal 
and covered by corrugations of wavelength X = 2n/l 
running down the slope at an angle ß to the line of 
maximum slope (Fig. 1), adopting the approach that any 
topography may be decomposed into Fourier components 
and a linear wave field found by summation. The 
inclination of an internal wave constant phase surface to 
the horizontal is given by 

0 = sin1 (G/N), (1) 

and phase of the waves is stationary if the intrinsic 
frequency of the waves, a, satisfies all = Vcp, so that 

9 = sin"1 (xcp), (2) 

where % = V7//V is a Froude number of the flow, such that 

[psl+{\-p)cj2\1<l<c^\ (3) 

where p = 1 - (f IN)2 (Thorpe, 1992; here cp = cos ß etc.). 
This may be written litVIN < Xy < 2nVI(N [psa

2 + 
(l-/j) CpJ]'/2), where \ is the wavelength of the 
topography measured along the slope in the y-direction. 
This implies that even though N may be small in deep 
water, the values of X for which internal waves will be 

Shelf break 

Figure 1. Sketch of the model geometry. The deep water region is 
generally taken to be 1000 m deep and the shelf 200 m deep. Both 
are bounded by vertical walls (or by 'spongy layers' to absorb 
wave energy). Topography is superimposed on the slope (shown 
'stippled'). The model is periodic in the along-slope direction. The 
mean flow is parallel to the line of the shelf break and uniform 
across the channel formed between the side walls. In section 2 the 
effect is considered of 'ripples' with crests aligned at angle ß as 
shown. 
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generated in the ocean are generally limited to scales 
between about 100 m and 10 km. We find that that waves 
generated near the upper part of the slope are most 
effective in the transport of momentum. The Burger 
number, B = NH/fL, where H is the water depth, is large 
there and generally it is justified to take (fINf « sa

2 « 1 
(see also caption to Fig. 2). Then (3) becomes 

(4) 

(This can be written sac& < VJ/N < 1, where V{ is the 
component of V normal to the crest lines of the 
topography, a more general form of eq. (4) when the 
direction of V is in any direction parallel to the plane of 
the slope). Although the wave phase is stationary in the 
flow, wave energy propagates with a positive component 
of group velocity towards shallow water when 

■|cos_,(sa/x) <ß<ß crit' (5) 

where ßcrit is the positive root of c$ca =\l-sll%2)'2- 

There is a preferential trend towards shallow water for 
moderate values of ß; the area of the % - ß plane (Fig. 2) is 
dominated by propagation towards shallow water. The 
bias increases as % decreases from cp-i (when ßcrit = 0) to s 
„ (when ßcrit = 7t/2 and all waves generated with stationary 
phase travel towards shallow water whatever the value of 
ß). It is found by simple geometry that the angle between 
the projection of the relative wave group velocity vector 
onto the horizontal plane and a horizontal direction 
pointing upslope normal to the isobaths is § given by 

COS(]) = 'aca-Weca+f9*ß-Ja 

l\h(cl 

(6) 

+ t: 

(e.g., seeEriksen, 1982; Gilbert, 1990). 

2.2. Reflection of Internal Waves at the Sea Surface and 
Slope; N and a Uniform 

The ocean, unlike the atmosphere, has an upper 
boundary, the sea surface. Reflection of waves from a 
smooth sea surface or from a smooth slope will preserve 
the wave frequency and along-slope wavenumber and 
waves will therefore remain stationary in the along-slope 
flow. 

After downward reflection at the sea surface, waves 
will return to the sea bed. Provided that 9 > a, the angle 
<(> will decrease towards zero at each successive reflection 
of the waves from the slope, even if the internal waves are 
generated with a positive component of their group 
velocity directed towards deeper water (see Eriksen, 1982, 
figure 2b). The internal lee waves are therefore trapped 

within the slope-shelf region when 9 > a, their group 
velocity relative to the mean flow progressively turning 
towards the up-slope direction on each reflection from the 
bottom. The only waves to escape will be either those 
generated with a component of group velocity towards 
deeper water, the areas which are not stippled in Figure 2, 
or those which, on generation, propagate towards shallow 
water but have 6 > a (those in the area in Fig. 2 with ß > 
0 and sa < % < sjc?). The latter reflect towards deeper 
water on their first reflection from the slope. Of the former 
there are two classes: those which propagate at an angle 
below the horizontal, which may not intersect the slope, 
and those which, after their first reflection from the sea 

P. deg. 

Figure 2. The ß - % plane for sin"1 a = 0.1 showing the areas, 
sa< X < C"V in which stationary phase waves can be formed 
over sinusoidal topography on a slope. The direction of group 
propagation of these waves is towards shallow water in the 
stippled area. This area is bounded by the curve ß = ßcrit = 

cos-1 [(1 - si 13C2 V2 I ca ] when ß > 0 , and by the curve % = 
io/cß when ß < 0. The value of 9 is n/2 (vertically propagating 
waves) on x = c~V 9 = tan_1(Wß) on the full curve separating 
the areas of different propagation directions for ß > 0. 9 = a on 
the dashed curve where ß > 0 and on the curve separating 
directions for ß < 0. Between the latter and % = sa wave 
propagation is below the horizontal and towards deeper water. 
On x = *a 9 = sin-'Cs« cp) and so is less than a. All waves in the 
sector sa / cp < % < c_1ß will (after sufficient reflections if ß > 0) 
propagate towards shallower water depths (see 2.2). The effect 
of non-negligible fIN is to increase the lower values of % to (sa

2 

+f2/N2)m. The lower bound of % increases with increasing I ß 
I, and the curve separating the regions of wave propagation 

towards deeper or shallower water in ß > 0 has increasing values 
of x at large ß. The overall effect is to reduce the area of the X - 
ß plane in which stationary waves are possible. Crosses and 
circles correspond to the parameter values at which numerical 
experiments are made (see Figs. 4 and 5). 
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surface or on a subsequent group velocity towards deeper 
water, reach the abyssal plain. (Some waves generated 
sufficiently near the foot of the slope will always "escape" 
in this way). Over the area in the % - ß plane in which sa/cp 

< % < cß' (Fig- 2) all stationary phase waves, including 
those which are propagating towards deeper water when 
generated (provided they reflect sufficiently often from 
the slope and do not reach the abyssal plain), will 
eventually propagate towards shallower water depths. 

If the the sea surface or slope is rough where the 
reflection occurs, some of the internal wave energy may 
be scattered (see Baines, 1971 a,b; Thorpe, 1992) or, for 
surface reflection, the internal waves may even interact 
resonantly with the surface waves. For simplicity, these 
latter effects are disregarded here but should be 
considered when it comes to comparison of theoretical 
estimates with observations. 

2.3 Effects of Non-Uniform N and a 

The conclusions of section 2.2 ignore the variations of 
N and a which occur in the ocean. Waves propagating 
upwards towards the sea surface from the lower parts of 
the slope will encounter regions where the density 
gradient and therefore TV increases. Since the intrinsic 
frequency, a, is conserved, the angle of the group velocity 
vector to the horizontal, 0 = smA(G/N), decreases as N 
increases, and the wave paths will be refracted towards the 
horizontal. Since generally a increases towards the shelf 
break, the waves propagating towards shallower water 
may therefore return to meet the slope (i.e., propagating at 
an angle, 0, which is smaller than the local slope), and 
generally be reflected back toward deeper water. Waves 
propagating towards deeper water at generation may never 
reach the surface and will therefore not be reflected back 
to the slope, will continue to radiate into deeper water, 
and will not be trapped in the shelf region. 

In contrast, If N becomes very small at some depth 
level below that of the shelf break, as for example, it will 
do when the depth of the winter convectively mixed layer 
exceeds that of the continental shelf, internal waves will 
be unable to propagate beyond the level at which a = N 
and will be reflected down to be trapped in the wedge 
between the slope and the level at which a -N , possibly 
with enhanced amplitudes and breaking which may serve 
to contribute to the further deepening of the convective 
layer if dissipation is not sufficient to limit them. No 
momentum will then be carried by the waves onto the 
shelf. 

3. Numerical Results 

3.1 The Model 

We used a semi-spectral hydrostatic primitive equation 
model developed by Haidvogel and others (see Haidvogel 
et al., 1991; Chapman and Haidvogel, 1993) to examine 
stratified uniform flow along a channel with a section 
consisting of a constant 200-m-depth shelf, slope with 
angle a generally taken such that sa = 0.1, giving an 8-km 
length slope, and constant 1 km depth abyssal plain (Fig. 
1). The uniform flow runs parallel to the isobaths of the 
slope and is laterally constrained by parallel vertical 
boundaries on the shelf and abyssal plain. Periodic 
conditions were chosen in the along-slope direction. The 
vertical flow structure is represented through modified 
Chebyshev polynomials, seven being found adequate 
when the buoyancy frequency, N, of the fluid is constant 
in depth, but twenty-one being found necessary to 
satisfactorily resolve the flow in some runs (Thorpe, 
1995) in which N varies with depth. Experiments were 
made with uniform and oscillatory flows over topography 
of various kinds on the slope. 

Like Chapman and Haidvogel we adopted a free slip 
boundary condition at the lower and upper (rigid lid) 
boundary and included only 'horizontal viscosity', usually 
set to zero. Where necessary, higher viscosity spongy 
layers were introduced in the vicinity of the lateral 
boundaries to prevent their affecting the flow over the 
slope. 

3.2 Steady Flow Over 'Bump' Topography 

First test runs of the model proved its integrity through 
its ability to reproduce earlier results of stratified flow 
around isolated Gaussian topography on a horizontal 
plane. Figure 3 is an example of the effect of the slope on 
the perturbation field caused by an along-slope flow with 
N = 10"3 s"1 and speed V = 0.1 m s"1 over an isolated 10 m 
high Gaussian 'bump' with scale radius 2.1 km at the 
position marked with a circle. Shown is the along-slope 
component of the current field at the sea surface 30 hrs 
after the onset of the flow, when (a) the slope angle is zero 
and the water depth is 600 m and (b) when the topography 
is located at 600m water depth, half way up a uniform 
slope with s„ = 0.1 between the 200 m 'shelf and the 
1000-m deep plain. The wave pattern is distorted in the 
upslope direction. The momentum flux across the 20-km- 
long shelf break is given by Fx/p0VN = 1.55xl04 m3, and 
this is about six times greater than the momentum flux 
across the foot of the slope at the same time. 
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3.2 Steady Flow Over 'Bump' Topography 

First test runs of the model proved its integrity through 
its ability to reproduce earlier results of stratified flow 
around isolated Gaussian topography on a horizontal 
plane. Figure 3 is an example of the effect of the slope on 
the perturbation field caused by an along-slope flow with 
N = 10"3 s"1 and speed V = 0.1 m s"1 over an isolated 10-m- 
high Gaussian 'bump' with scale radius 2.1 km at the 
position marked with a circle. Shown is the along-slope 
component of the current field at the sea surface 30 hrs 
after the onset of the flow, when (a) the slope angle is zero 
and the water depth is 600 m and (b) when the topography 
is located at 600 m water depth, halfway up a uniform 
slope with sa = 0.1 between the 200 m 'shelf and the 
1000-m-deep plain. The wave pattern is distorted in the 
upslope direction. The momentum flux across the 20-km- 
long shelf break is given by Fx/p0VN = 1.55 x 10" m3, 
and this is about six times greater than the momentum flux 
across the foot of the slope at the same time. 

3.3 Steady Flow Over Sinusoidal Topography 

Further tests of the model were made to establish it 
produced waves over sinusoidal ripples on the slope at 
times of about 3-12 hr which were consistent with 
predictions of the analytical model; their inclinations were 
in accord with the theory. 

Several runs were made to explore the properties of the 
model with 'typical' values and rippled topography of 
amplitude a. Seven polynomials were usually taken to 
define the vertical structure and an along-slope grid of 14 
points and an upslope direction grid of 101 point was 
generally used. Values of the momentum flux through a 
vertical plane at the shelf break, Fxt, generally increased 
with time after the flow was switched on, before settling to 
a value about which fluctuations of 5-10% occurred after 
a 'spin-up' time estimated to be approximately equal to 
that required for waves to arrive from the foot of the 
slope. Eventual numerical instability proved to be 
unavoidable with zero viscosity, but was usually delayed 
until the model had run for some 90 hrs. It was commonly 
preceded by a fall and then a huge and rapid rise in flux. 

The 'steady' momentum flux Fxx scales with a2 as 
expected by linear theory, at least up to values of a/ = 
0.024. 

Figure 4 shows the variation of the scaled flux at the 
shelf break, F, = Fxxl(a

2p0VNA), where p0 is the mean 
(reference) density and A is the area of the vertical section 
at the shelf break, for various values of ß and with V - 0.1 
m s\ a = 0.5 m, Xy = 3 km and N = lxlO'3 s1 (the 
corresponding % and ß values are shown by crosses in 
Figure 2. Values of Fxx are factors of (3.4 ± 1.1) greater 
than those found for I ß I < 40 ° when vH = 1 m2 s\ 
demonstrating the large damping produced by viscosity 
when it is included in the numerical model). Slightly 
higher fluxes are found for ß < 0 than at the corresponding 

Figure 3. The effect of the slope on the perturbation field caused 
by an along-slope flow over an isolated 10-m-high Gaussian 
'bump' with scale radius 2.1 km at the position marked with a 
circle. Here N = 10~3 s"1 and the flow V = 0.1 m s"1 is to the right. 
The scales are in km. (a) shows the along-slope component of the 
current field at the sea surface 30 hr after the onset of the flow, 
with zero slope angle and 600 m uniform water depth, (b) shows 
the same current component at the same time when the topography 
is located at 600 m water depth, but now half way up a uniform 
slope marked by dashed lines with sa = 0.1 and which lies 
between the 200 m 'shelf (at the top) and the 1000-m-deep plain 
(at the bottom of the figure). Contours are shown at 0.05 cm s"1 

intervals. The largest current component fluctuation from the mean 
10 cm s"1 current is 0.45 cm s"1. The effect of the slope is to distort 
the wave pattern in the upslope direction towards and across the 
shelf break. 
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Figure 4. Plot of values of the scaled horizontal flux of horizontal 
momentum, F, = Fxs/(a

2p0VNA) (circles) and F2 = Fx2/(a
2p0VNA) 

(crosses) vs ß, derived from the numerical model with values of V 
= 0.1 m s "', a = 5.74°, N = 10"3 s"1. Larger values of the flux, Fu 

are found at negative values of ß than at the corresponding 
positive values. F2 is significantly greater than zero only when ß is 
greater than about 28° and dominates the flux from the slope when 
ß > 40°. The dashed curve is F, = 0.028 cos4(ß + 7.0°). 

positive values of ß, as expected from the analytical 
results. The dashed curve in Figure 4 is the best fit of F{ = 
FlQ cosq(ß + ßO to the data having q = 3.9 ± 0.15 and ß, = 
7 ± 2°. This figure also shows the scaled 
horizontal  momentum flux through  a 
vertical plane at the foot of the slope, F2. 
The value of ßcrit at which the infinite 
depth analytical model predicts that the 
direction   of  the   wave   flux   changes 
direction from being towards shallower 
water depths (ß < ßcrit) to being towards 
deeper water, is 27.9°. F2 is negligible 
for ß < ßcrit (when all wave propagation 
is towards shallow water) but increases 
for larger ß, becoming equal to F, at ß = 
42° and exceeding F, at larger ß. Fu 

however, does not approach zero as ß 
increases towards ßcrit, supporting our 
earlier conclusion that even when the 
group velocity of the generated waves 
has a positive component towards 
deeper water, reflections from the sea 
bed will lead to momentum transfer 
towards shallow water. 

e 

Figure 5 shows the variation of the scaled flux, F„ with 
X, when ß = 0 and with a - 0.5 m and with V taking values 
from 0.07 to 0.2 m s"1, N values from 0.5 x 10"3 s"1 to 2 x 
10"3 s"1, and Xy values from 0.5 to 6 km. The mean flux is 
estimated between 48 and 84 hr after the onset of the flow. 
At values of % = 0.105 (close to % = sa> wnen waves 
propagate with 0 close to cc) and at 0.90 and 0.97 (near % 
= Cp' when 0 is close to 7t/2) the values of Fx were 
unsteady and still generally increasing when numerical 
instability occurred. Very small values of flux are found 
when % > 1. The mean values of the scaled flux are about 
0.035, with a rise in values occurring near % = 0.44. At 
time t such that Nt = 64.8 (18 hr if N = 10"3 s'1) F, has 
reached about half the 'steady' value when 0.1 <%< 0.3, 
but is already within the uncertainty of the 'steady' values 
when 0.5 < X < 0.8. Over the limited range of values 
tested, the scaling gives consistent results, at least within 
the uncertainty of the variations of the estimates, and are 
independent of Xy except in so far as it affects %. As 
expected, the momentum flux into deep water at the foot 
of the slope was very small, but positive, for all values of 
%. When sa = 0.2, similar values of F, are found near % = 
0.3, but values 50% lower than those shown in Figure 5 
when % = 0.48 and 0.62, suggesting that here at least the 
flux is proportional to the area of slope generating the 
waves. Fx must be zero at a - 0, ß = 0. 

The magnitude of the stress at the shelf break can be 
compared to that on the sea bed 

vB = CDp0V
: (7) 

where CD is a drag coefficient, approximately equal to 
3xl0"3 (Heathershaw, 1979). The maximum momentum 
flux across the shelf break per unit area when ß = 0 is 5 x 
10"2 p0a

2VN, which is equal to xB (with V = 0.1 m s"1, N = 1 

Figure 5. Plot of values of the scaled horizontal flux of horizontal momentum across the shelf break 
F, = Ft,/(a2p0VWA), versus % at sa = 0.1 and ß = 0. The points represent variation of (crosses) A 
(circles) U, and (squares) N, from 'typical' values, X = 3 km, U = 0.1 m s4, and N = lxlO"3 s"1 . Thi 
vertical bars represent the range of variability of the numerical estimates. 
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x 10~3 s"1) when a = 2.5 m. This is a small value. The net 
stress in the 200-m-deep water at the shelf break is equal 
to that on the 8-km sloping boundary when a = 15.5 m, 
which is not untypical of the amplitude of the real 
topography on continental slopes. Smaller corresponding 
values of a would be found if N were larger. 

Flow over model 'canyons' is found to produce wave 
patterns propagating onto the 'shelf, with intensification 
of currents near the canyon head. 

3.4 Other Cases 

The effect of flow oscillation and stratification is found 
to modify the area of the slope and the time over which 
wave generation is possible, and to create an oscillatory 
flux. Even a relatively small mean flow can result in a 
rectified momentum flux of mean magnitude similar to 
those found in steady flows alone. An area of real 
topography with mean bottom slope close to 5° and with 
superimposed topography with relative rms amplitude, h, 
of 9.2 m has also been modelled. Stress values within the 
range of those in Figure 5 were found. 

4. Discussion 

4.1   A Working Value for the Flux Across the Shelf 
Break 

As a working scheme for parameterising the drag 
coupling between the deep water circulation and the shelf 
water circulation at the shelf break, the model results 
described above and comparison with the 
parameterisation of wave drag in the atmosphere (Thorpe, 
1995) suggest a stress x. at the shelf break produced by 
waves generated per unit area of the slope given by 

x, = fcpnV7V722cos4(ß+ ß0), (8) 

where p0 is the mean water density, V is the mean along- 
slope flow over the slope, N is the buoyancy frequency in 
the vicinity of the shelf break, and h and ß are the rms 
amplitude of the topography of scale such that % < 1, and 
its mean orientation respectively. The ß variation is 
derived from Figure 4 with ßQ = 7 ± 2°and is probably 
valid only when ß < 60°. The value k determined from 
Figure 5 is about 9 x 10"6 m"2, with values near 1.3 x 10"5 

rn2 when the topography is dominated by wavelengths 
less than 4nV/N (% > 0.5), or 5xl0"6 m"2 when they exceed 
2QV/N (x < 0.3). 

4.2 Is the Momentum Flux Significant? 

Equation (8) provides an outer boundary condition for 
the shelf circulation. Where the momentum is surrendered 
to the shelf-sea circulation will depend upon the processes 
which lead to the transfer of stress from the waves, such as 
wave breaking  or  wave-flow  interaction,  and  corres- 

ponding distances over which these are effective. Internal 
waves near the shelf break frequently appear as soliton 
packets which, in a shallow thermocline or water depth, 
evolve from localised, often single crest or trough, tidal 
disturbances (Gerkema, 1994). In reality, the waves 
generated in our models may evolve in a similar fashion. 
The course resolution of the numerical model fails to 
show this evolution. Sandstrom and Elliott (1984) 
observed that internal tidal waves and associated wave 
solitons are dissipated within about 10 km of the shelf 
break and over periods of about 5 x 104 s, with shear flow 
instability probably playing a part. In their analysis of 
other observations of internal waves propagating on the 
shelf, Sanford and Grant (1987) conclude that dissipation 
in the benthic boundary layer is unable to account for the 
dissipation observed; other mechanisms must be 
important. 

We may estimate an eddy diffusion coefficient for 
momentum at the shelf break, K, from the equation x/pQ = 
K dU/dx. If we write dll/dx = U/Ro, where Ro is the 
internal Rossby radius of deformation of the shelf waters 
(equal to NH/f) and which we might suppose provides a 
scale for wave-flow momentum transfer (arguably the 
scale might increase with H and/"1, and decrease when 
stratification decays in winter), then with x = x», K = k 
N2h2H/f, so that the coefficient scales with h2, the mean 
square roughness of the topography on the slope. The 
value of K falls to zero when N tends to zero, a condition 
(as in winter) in which no internal waves can propagate 
onto the shelf. With N = 10"3 s1 ,/= 10"4 s\ H = 200 m 
and h = 10 m, K = (14 ± 6) x 102 m2 s'1, a large value at 
the scale, 20 km, of the corresponding Ro (less than the 10 
km found by Sandstrom and Elliott, 1984). 

We may alternatively estimate a time-scale associated 
with the rate of transport across the shelf break, the ratio 
of the momentum in the slope current divided by the flux. 
The momentum per unit along-slope length of the current 
is its cross-sectional area multiplied by Vpa and, using the 
sa = 0.1 slope from 200 m depth to 1000 m depth, this is 
9.6 x 106 Vp0 (SI units). The corresponding momentum 
flux is x»x (200 m) x (8 km), and the time scale is 1.2 x 
lOVkNa2, or (4.9 ± 2.1) days if N = 10"2 s1. This is 
sufficiently small for the flux to be a significant factor in 
the balance of forces driving and dissipating the flows. 

The wave momentum is positive in the direction of 
wave propagation through the mean flow, and therefore 
has a positive component in a direction contrary to the 
mean flow which is supported by the pressure acting on 
the sea bed. The momentum transferred back into the 
mean flow when waves break, or otherwise interact with 
the flow field to transfer their momentum to it, will 
therefore accelerate the fluid in a direction contrary to the 
mean flow over the slope generating area, retarding the 
mean current where it is in the slope flow direction or 
possibly driving a counter current on the shelf. Since the 
internal waves reaching the shelf have a component of 
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momentum directed in the on-shelf direction, the source of 
which is a component of the lift forces experienced by the 
topography, they may also tend to drive flow onto the 
shelf, at least until resisted by the production of adverse 
pressure gradients from the shoreward boundary. 
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Flow Separation in the Ocean 
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Abstract.   Flow separation, which can lead to major modifications of flow patterns and drag, 
appears in many different guises in the rotating, stratified ocean. Some of these are reviewed, with 
an emphasis on the role of bottom slope. In particular, this can affect the surfacing of the interface 
for a coastal current flowing around a bend, and may also enter the criterion for boundary layer 
separation for low Rossby number flow past a submerged topographic feature. 

Introduction 

Boundary layer separation is a fluid mechanical pro- 
cess of fundamental importance in a variety of engineer- 
ing situations. Aerodynamic lift on wings or propellors 
would be impossible without it, thus ruling out work- 
shops in Hawaii! More typically than for these exam- 
ples, which involve smooth separation at a sharp trail- 
ing edge, boundary layer separation in high Reynolds 
number flow past a bluff body generally leads to the 
advection of significant amounts of boundary layer vor- 
ticity into the fluid interior, causing a much more tur- 
bulent wake and more drag than if the boundary layer 
remained attached. 

Given this potential for separated flow to lead to con- 
siderable turbulent stirring and mixing, and for the drag 
to be very different from that in attached flow, it would 
thus seem important to investigate the circumstances 
under which flow separation occurs at topographic fea- 
tures in the ocean. If the flow is homogeneous and at 
high enough Rossby number for the earth's rotation to 
be unimportant, then flow past isolated features on the 
sea floor may be similar to that in familiar engineer- 
ing configurations, though sometimes complicated by 
the pre-existence of a bottom boundary layer in the 
upstream flow (Taylor, 1988). Situations in which the 
water depth goes to zero, as for shallow water flow past 
coastal features, are particularly different, in that tur- 
bulent bottom friction is more important than lateral 
friction, giving a criterion for flow separation that is dif- 
ferent from the familiar engineering one. This will be 
reviewed, with particular reference to the instructive 
study of Signell and Geyer (1991). 

The effect of rotation is readily included in the anal- 
ysis of homogeneous nearshore flows. It also enters into 
consideration of stratified flow in the ocean and is asso- 
ciated with another type of flow separation: the surfac- 
ing, at the shore, of the interface in an inviscid reduced 
gravity flow around a bend. An analysis of this, involv- 
ing the competition of Coriolis and centrifugal forces, 
was conducted by Klinger (1994) for the case of a ver- 
tical side wall. This, and the extension to allow for 
a more realistic bottom slope, will be reviewed, along 
with a qualitative discussion of viscous boundary layer 
separation, within the upper layer, even if the interface 

does not surface. It is also possible to speculate on the 
secondary cross-stream flows that would be expected 
in this situation as well as in the previous example of 
homogeneous flow past a headland. 

The flow of a continuously stratified flow past an iso- 
lated topographic feature has been discussed in the me- 
teorological literature for high Rossby number, as re- 
viewed by Kaimal and Finnigan (1994). In the ocean 
the Rossby number may well be small, so that it is nec- 
essary to consider the evolution of the bottom Ekman 
layer as the flow passes the object. This topic, and some 
surprising possibilities, will be introduced later, but we 
start with a reminder of the fluid dynamics of boundary 
layer separation in the flow past a bluff body. 

Flow Separation at High Reynolds Number 

Kundu (1990) and other fluid dynamics texts describe 
the basic physics of flow separation in a typical engineer- 
ing situation. The pressure gradient parallel to a surface 
is the same at the surface as just outside a boundary 
layer if this is thin, and, by Bernoulli's theorem, changes 
sign at the point where the external flow is a maximum 
(Figure 1). Beyond this point the opposing pressure 
gradient slows the external flow. It also slows the flow 
in the boundary layer, but this is already weak and so 
tends to be reversed, causing separation. This tendency 
can be offset, however, by the effects of viscosity, since 
right at the boundary (with x along it and y the normal 
coordinate) 

p dx dy2' 

where v is the viscosity, thus only requiring an inflec- 
tion point in u(y), and not necessarily flow reversal, 
in a region with dp/dx > 0. In many practical situa- 
tions separation does occur fairly soon after the point 
at which the pressure gradient reverses, but it can be 
delayed by making the change gradual, or by increas- 
ing the effective viscosity by triggering turbulence (e.g. 
Kundu, 1990). 

Shallow Water Flow 

Signell and Geyer (1991, henceforth SG) contrast this 
conventional situation with that of the flow past a head- 

119 



120 GARRETT 

Figure 1. Velocity profiles and streamlines for separating 
flow past a bluff body. The flow outside the boundary layer 
increases from 1 to 2 where it is a maximum and the pressure 
is minimum. Beyond this d2u/dy2 > 0 at the boundary, 
with reversed flow beyond the point of separation 3. The 
dashed line has u = 0. (Modified from Kundu, 1990). 

land, in a situation governed by the shallow water equa- 
tions 

du 

~di 
u • Vu + /k x u = 

CDu|u| 

dt 
l(h + r,)u} 

ük"    (h + v) 
+V-AHVU (2) 

0 (3) 

where u = (u, v) is the depth averaged horizontal veloc- 
ity, / the Coriolis parameter, k a unit vertical vector, g 
gravity and r\ the surface elevation in water of depth h 
at rest. Bottom friction involves a drag coefficient CD 

and lateral mixing of momentum is allowed for through 
a horizontal eddy viscosity AH- This corresponds to 
the viscosity of the conventional problem, but the asso- 
ciated term, the last in (2), is small compared to bottom 
friction near the coast where the water is shallow and 
AH must decrease due to limited eddy size. 

Close to the coast, then, the alongshore momentum 
balance is 

du        du 
dt        dx 

dr\     Cr>u\u\ 
dx »+,)        (4) 

where x is the curvilinear longshore coordinate, u the 
velocity component in that direction and the offshore 
velocity component is small enough for fv to be neg- 
ligible. SG make the important point that, from sim- 
ple scaling of (4), the terms on the left hand side are 
unimportant right at the shore, so that the balance is 
between the alongshore pressure gradient and bottom 
friction, requiring flow reversal as soon as the pressure 
gradient reverses. 

On the other hand, as SG remark and again in con- 
trast to the conventional situation, the influence of fric- 
tion away from the very nearshore region means that 
a reversal of the pressure gradient does not occur at 
the maximum of the alongshore current on a particu- 
lar streamline, and need not occur at all if the current 
slows down no more rapidly than would be caused by 
friction alone. 

SG obtain an estimate of the alongshore pressure gra- 
dient for the situation in which the water depth is con- 

> x 

Figure 2. Flow past a coastal feature separated by a narrow 
sloping region from a sea of constant depth H. 

stant outside a narrow region (Figure 2). In this case 
the external flow is approximately irrotational (in the 
horizontal), due to the vanishing of the main vorticity 
generating term involving Crju x V/i, and so may be 
estimated and then used in (4) to derive the alongshore 
pressure gradient which applies also right at the coast 
if the sloping region is sufficiently narrow. 

To avoid a reversal of the pressure gradient for steady 
flow we require \udu/dx\ < Cuu2/H, where H is the 
(constant) offshore water depth. SG evaluate u for a 
headland with the shape of a half ellipse, but in gen- 
eral, for a headland of width L and departure b from 
a straight coastline, we expect a change AC/ ~ (b/L)U 
in the alongshore flow. Assuming b/L to be small, flow 
separation is thus avoided if UAU/L < CDU

2
/H, or if 

the headland aspect ratio b/L <, CDL/H. Equivalently, 
though not expressed in these terms by SG, the radius of 
curvature, L2/b, of the coastal feature, must be greater 
than about H/CD. This is 10 km if CD ~ 2 x 10"3 

and H = 20 m, with flow separation occurring even for 
steady flow if the radius of curvature is any less. 

SG find that separation is even more likely if b/L is 
not small, or if the flow is time dependent (as is readily 
apparent from (4)), and use a two-dimensional numeri- 
cal model to study the evolution of flows in which sepa- 
ration occurs, carrying significant amounts of vorticity 
into the flow interior and thus producing vigorous eddy 
activity. 

From this, and earlier work referenced by SG, the 
physics of two-dimensional flow separation in the coastal 
ocean is reasonably well understood. A limitation of the 
SG model is perhaps the assumption of constant water 
depth outside a narrow strip with a slope. Relaxation of 
this assumption to permit the slope to continue offshore 
would invalidate the approximation of two-dimensional 
potential flow outside a boundary layer, but a numerical 
model could be effective. 

The discussion so far describes only the depth av- 
eraged flow. As the frictional forces act at the bot- 
tom, rather than throughout the water column, three- 
dimensional secondary flows, across the depth averaged 
flow, can be expected. This will be discussed briefly 
later in the paper. 
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An Upwelling Density Front 

The above discussion has shown the importance of 
coastline curvature for boundary layer separation in 
frictional homogeneous shallow water flow in the coastal 
ocean. Another form of separation that has attracted 
attention recently is that associated with a two-layer in- 
viscid reduced gravity flow past a curved coastline (Fig- 
ure 3). The current is held near the straight coast up- 
stream by the Coriolis force, but tends to be pushed off- 
shore by the centrifugal force as it rounds a cape. If the 
curvature is small enough the interface may surface at 
the coast, so that the buoyant coastal current detaches 
itself from the coast and flows into the fluid interior 
as a jet. This phenomenon was observed in laboratory 
simulations (Whitehead and Miller, 1979; Bormans and 
Garrett, 1989) of the initial formation of the Alboran 
Gyre, in the Western Mediterranean, by Atlantic water 
flowing through the Strait of Gibraltar. Bormans and 
Garrett (1989) suggested that separation might require 
the radius of curvature of the coast to be less than the 

x < 

fu- 
,dh 

0 
dy      p + y 

and the potential vorticity conservation equation 

h~ f- 
du 

dy     p + y 
constant. 

(5) 

(6) 

Here p is the local radius of curvature of the coast (Fig- 
ure 3), u(y) the current and h{y) the interface depth. 
The sea surface displacement is very small compared 
with h and has been neglected in the potential vortic- 
ity equation. For simplicity, the potential vorticity has 
been chosen to be uniform across the stream. 

The physics of (5) is that the Coriolis force leads to an 
increase of h as the coast is approached from offshore, 
but for small enough p this can be offset near the coast 
by the centrifugal term, causing h to decrease. 

Klinger (1994) nondimensionalized the current speed 
with (g'ha)1/2, where ho is the upstream depth of the in- 
terface at the sidewall (Figure 4), y and p with the asso- 
ciated internal Rossby radius of deformation (ff'/io)1^2//, 
h with h0 and the potential vorticity with f/h0. 

The governing equations are then 

u + 
dh        u2 

1- 

dy    p + y 
du 

0 

dy      p + y 
= Sh 

(7) 

(8) 

where S is the nondimensionalized, constant, potential 
vorticity. It and the nondimensionalized W0 are the 
only two external dimensionless parameters. The prob- 
lem may be solved for u(y), h(y), and the current width 
W, for any choice of 6, W0 and local radius of curvature 
p. In particular, Klinger (1994) evaluated the critical 
radius pc(6,W0) for which h(0) = 0, with the inter- 
face surfacing at the coast. He found that, to a good 
approximation,  and almost independent of the value 

Figure 3. A reduced gravity coastal current flowing past 
curved coastline. 

inertial radius u/f, where u is the upstream current, 
and the problem has been addressed theoretically by 
Klinger (1994). He also considered different configura- 
tions in which the coastal current is confined near the 
coast but the upper layer extends infinitely far offshore. 
Here I will restrict the discussion to the first case, re- 
viewing Klinger's (1994) analysis for a vertical sidewall 
and then discussing its extension to allow for a bottom 
slope. 

Vertical Sidewall 

Ignoring terms involving derivatives in the down- 
stream, x, direction, the problem involves the cross- 
stream momentum equation 

> y 

V 

Figure 4. The cross-stream profile of interface depth h(y) 
upstream (dashed), where the coastline is straight, and past 
a convex bend. The width of the current changes from W0 

toW. 
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of the potential vorticity 6, pc = 0.9W0~ . In dimen- 
sional terms this becomes pc = 0.9g'h0(f

2WQ)~
1, or, 

using the geostrophic equation upstream, pc = 0.9ü//, 
where ü is the cross-stream average current upstream. 
This supports the hypothesis of Bormans and Garrett 
(1989); a typical critical radius, for ü = 1 ms-1 and 
/ = 10~4 s"1, is 9 km. 

Sloping Sidewall 

In reality, the sides of the ocean are sloping, not ver- 
tical! Jiang (1995) has analyzed the effects of this in the 
present context by extending Klinger's (1994) study to 
the configuration of Figure 5. The maximum current 
depth is still denoted h0, but W0 now refers to the up- 
stream width of the current beyond the point where the 
interface intersects the bottom; the total current width 
is s-1/io + W0, where s is the bottom slope. 

Figure 5. Upstream profile for a linear bottom slope. 

The governing equations are still (7) and (8) in the 
"free" region where an interface exists between the up- 
per layer and the stagnant lower layer. In the "wedge" 
region, inside the point where the interface intersects 
the bottom, we may still take (7) as the momentum 
equation, with h(y) now a proxy for the proportional sea 
surface elevation, or pressure, but the correct depth to 
use in the potential vorticity equation is now sy rather 
than h. Thus the right hand side of (8) becomes 6sy 
rather than 6h. Here the bottom slope s has been scaled 

by /WM-172- 
As before, the current width, and interface and ve- 

locity profiles as functions of y, may be calculated for 
a given coastal radius of curvature p. In particular, 
the critical radius of curvature pc at which the interface 
surfaces may be determined, but it is now a function 
of the three independent dimensional variables <5, W0 

and s. Figure 6 shows pc as a function of W0 for var- 
ious slopes s, all for 6 = 1.1, and demonstrates that a 
nondimensional slope less than about 1 is required for 
any significant difference from the results for a verti- 
cal wall. For a given W0 (and 6), separation requires a 
smaller radius of curvature if s is small, although the 
interpretation is more complicated if pc is plotted ver- 
sus the total upstream curfent width W0 + s'1. The 
curves of pc versus W0 do not vary greatly with S. 

Figure 6. The critical coastal radius of curvature pc, as a 
function of the upstream current width Wo for a dimension- 
less potential vorticity 5 = 1.1 and for various values of the 
scaled slope s. 

One interesting change for finite bottom slope is that 
the current can become narrower, rather than wider, as 
it rounds a bend of critical radius. This is illustrated in 
Figure 7, showing u{y) and h(y) upstream and at a bend 
of critical curvature. For a vertical sidewall (s = oo) the 
current spreads out; it does so less for s = 1 and, for 
s = 0.3, it actually narrows. In order to narrow while 
still conserving the total volume flux, the current speeds 
up considerably near the coast. This is a consequence of 
the need for shear vorticity to offset curvature vorticity, 
much as in the flow of a river around a bend. 

For the case of the Alboran Gyre, which was one mo- 
tivation for these studies, the non-dimensionalized bot- 
tom slope seems to be about 4, sufficiently larger than 1 
that Klinger's (1994) theory for a vertical wall is appro- 
priate. Thus the suggestion by Bormans and Garrett 
(1989), that attached flow might be possible if the sur- 
face current speed were to drop below about 0.4 m s-1, 
is not changed, though it remains imprecise due to the 
complicated nature of the real topography. 

The value of the potential vorticity for the example of 
Figure 7 has been chosen partly to illustrate the flow for 
a situation in which the upstream current at the coast 
is very small, as might occur in response to bottom 
friction. Bottom friction would, of course, oppose the 
increase in coastal current so that, even for a minimum 
radius of curvature greater than pc, streamline separa- 
tion at the coast might be expected at a point down- 
stream of its point of greatest curvature even though 
the interface did not surface. 

Bottom friction would also lead to depth-dependent 
cross-stream flow within the wedge region, again as for 
river flow, except that here the near bottom flow would 
be expected to be offshore in the upstream region with a 
straight coastline. Offshore bottom flow would depend, 
in fact, not on having v?{p + y)~l > fu, where u is the 
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Figure 7. Profiles of interface depth h(y) and current speed 
u(y) both upstream (p = oo) and at the separation point 
(p = pc) for 6 = 0.4, Wo = 0.35 and three values of bottom 
slope (s = oo, 1,0.3). 

depth averaged current, but on the u derivative 2u(p + 
y)_1>/- 

All of the discussions in this section have depended 
on slow downstream variation of the flow, so that x 
derivatives, and terms involving the velocity component 
normal to the coast, can be ignored. As pointed out by 
Klinger (1994), very slow variation of p is not possible 
if the total change in direction is not to exceed, say, 
90°. He finds that the ratio of neglected to retained 
terms is of the order of W/p, and so not small for all of 
the (<5, Wo) parameter space. Further investigation of 
the problem therefore requires solution of a fuller set of 
equations. 

Stratified Quasigeostrophic Flow Past 
an Obstacle 

Flows past submerged topographic features in the 
ocean are influenced by bottom slope, stratification and 
the earth's rotation as well as by bottom friction. Even 
for homogeneous flow at high Rossby number (so that 
rotation is unimportant) the simple ideas of boundary 
layer separation that apply for high Reynolds number 
flow past objects isolated in three dimensions do not 
always apply directly because the upstream flow al- 
ready has the characteristics of a boundary layer (Tay- 
lor, 1988). Flow separation then seems not to occur at 
small bottom slopes, perhaps because, as for the coastal 
problem of SG, a negative pressure gradient is required 
just to overcome viscous effects even away from the sur- 
face of the feature. Taylor (1988) suggests that separa- 
tion will occur, however, if the maximum slope is greater 
than 0.3, at least for two dimensional features.   The 

steepness required for separation appears to be larger 
for three-dimensional hills, but less so if surface rough- 
ness is added (Kaimal and Finnigan, 1994). 

If stratification is taken into account, though still 
ignoring rotation, a wide range of possiblities exists, 
partly characterized by Froude numbers based on the 
width and height of the feature (e.g. Kaimal and Finni- 
gan, 1994, and references therein). In particular, the 
generation of internal gravity lee waves can lead to 
downslope acceleration in the lee of the obstacle, associ- 
ated with a negative pressure gradient and thus ruling 
out separation. In this case, the slowing of the invis- 
cid flow, and hence the possibility of boundary layer 
separation, occurs upstream, not downstream! 

A similar downstream acceleration was found by Rich- 
ards et al. (1992) to be associated with the non- 
separation, for sufficiently small Rossby number of ro- 
tating, homogeneous, flow past an obstacle. They re- 
mark that a predicted positive pressure gradient up- 
stream did not lead to flow separation in their labora- 
tory experiments; perhaps this effect is a function of the 
Reynolds number. 

A general oceanographic situation, involving both 
stratification and rotation, is thus likely to be very com- 
plicated, but it seems clear that a first step is to con- 
sider the inviscid flow and then the nature of the bot- 
tom boundary layer and the possibility of its direction 
of flow reversing. 

In some situations it may be relevant to invoke the 
"arrested Ekman layer" concept of MacCready and 

Rhines (1991, 1993). If the alongslope flow is "upwelling 
favorable" a bottom Ekman layer will be pushed up 
the slope, but with a decreasing flux as the buoyancy 
force becomes more important and eventually balances 
the pressure gradient which, above the Ekman layer, 
is in -geostrophic balance with the Coriolis force on the 
alongslope flow. As shown by MacCready and Rhines 
(1993), this complete arrest of the bottom Ekman layer 
by buoyancy forces is equivalent to the development 
of sufficient isopycnal slope for the associated thermal 
wind to bring the alongslope velocity to zero at the 
boundary. 

If a flow accelerating past a topographic feature were 
moving slowly enough for the bottom Ekman layer to 
become arrested, and remain arrested as the flow in- 
creased, then the associated thermal wind would reverse 
the flow near the bottom if the inviscid flow outside the 
boundary layer decreased downstream. On the other 
hand, if the water were moving quickly enough that the 
bottom Ekman layer were only partly arrested, the as- 
sociated thermal wind might be insufficient to reverse 
the bottom flow even in a region of deceleration of the 
inviscid flow. 

It thus seems possible that a criterion for the flow not 
to separate is that the Ekman layer arrest time should 
be greater than the time for a fluid parcel to flow past 
the feature. For an upwelling bottom boundary layer, 
the arrest time is of order (CDN/f)~l/2S~1 /_1, where 
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CD is the bottom drag coefficient, N the buoyancy fre- Discussion 
quency outside the boundary layer, / the Coriolis fre- 
quency and S - N2 tan2 6/f2 is the Burger number for 
a bottom slope making an angle 9 with the horizontal 
(Garrett et al., 1993). If CD ~ 2 x lO"3, N/f = 10, 
S = 1 and / = 10-4 s~"\ this arrest time is 7 x 104 s, 
comparable with the transit time past a 10 km scale 
object at a speed of 0.14 m s_1 (and so with a Rossby 
number of 0.14, small enough for the quasigeostrophic 
assumption to be reasonable). 

A smaller value of S would give a longer arrest time, 
and so make non-separated, attached flow more likely, 
but of course for S ^ 1 the flow might form a Taylor 
cone above the base of the object anyway, and so not be 
attached even in inviscid conditions! Clearly, as stressed 
earlier, a first step is to solve the inviscid problem, as 
this may predict separated flow and eddy formation for 
reasons that have nothing to do with boundary layer 
behavior. 

Returning, however, to the assumption that the in- 
viscid flow is simple and attached, we now contrast the 
behavior if the basic flow is "downwelling favorable", 
so that a bottom Ekman layer would be pushed down 
the slope. In this case the arrest time is increased, due 
to the thickening of the layer by hydrostatic instability, 
to a time of order \C^lN-lS~3'2, or 2.5 x 105 s for 
the same parameter choices as before. We thus appear 
to have the possibility, for flow past an isolated obsta- 
cle, that the flow would separate on one side where the 
boundary layer upwelled and was quickly arrested, but 
not on the other, downwelling, side where arrest and 
separation do not occur! Even if the flow remained at- 
tached on both sides, there would be a mismatch in the 
boundary layer characteristics either side of a down- 
stream stagnation point, with consequences that need 
exploring. 

Further investigation should include laboratory, field 
and theoretical studies, with the latter including ana- 
lytical and numerical work and even further discussion 
of the preliminary nature embarked on here. Some lab- 
oratory work has been reported by Zhang and Boyer 
(1993). They did find attached flow of a stratified ro- 
tating flow past a model seamount at very low values of 
the Rossby number, for which the arrest time is shorter 
than the transit time, in apparent contradiction of the 
argument presented above. In these experiments, how- 
ever, the flow was oscillatory, with a particle displace- 
ment considerably less than the seamount scale, and it 
is not clear what might be expected theoretically. 

Zhang and Boyer (1993) found a variety of other flow 
patterns, some involving eddy shedding, for different 
values of the Rossby number and oscillation frequency, 
but it is not obvious, without analysis of the invis- 
cid problem, whether the eddy formation was a con- 
sequence of boundary layer separation or an inviscid 
response to the topography. 

Flow separation appears in a number of different 
frictional and inviscid ways in the ocean, and nearly 
always involves different physics from that associated 
with boundary layer separation of a high Reynolds num- 
ber past a bluff body. In some of these oceanographic 
situations, such as shallow water flow past headlands, 
the processes are understood, but in others, such as 
quasigeostrophic flow of a stratified fluid past a topo- 
graphic feature with sloping sides, studies are only just 
beginning. Further work is particularly important for 
this and other problems where the processes responsi- 
ble for flow separation, or attachment, are unresolved 

in most models. 
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An Inertial Model of the General Circulation in an Ocean 
with Bottom Topography 

Janet M. Becker 
Department of Ocean Engineering, University of Hawaii, Honolulu, Hawaii 

Abstract. The barotropic, wind-driven circulation in a basin bounded at the south by the equator and for 
which the ocean depth varies smoothly between a constant deep ocean value and zero at the coasts is 
examined numerically to analyze how inertia and topography affect theoretical models of the general 
circulaton. As is well known, the inclusion of topography aligns the boundary currents along f/H contours. 
Increasing the wind forcing leads to unsteady inertial circulations that consist of periodic, modulated, and 
irregular eddy generation. 

1. Introduction 
The effects of topography on the general ocean 

circulation have long been recognized as important. The 
majority of theoretical ocean general circulation models, 
however, have been confined to flat bottom oceans or 
have invoked the quasi-geostrophic approximation. One 
assumption central to the quasi-geostrophic approximation 
is that variations in the fluid depth are small. As a result, 
the ocean depth typically is discontinuous at coastlines in 
these models. While many useful insights about ocean 
boundary currents have been gained from these theoretical 
models, open questions remain about how the boundary 
currents affect the gyre-scale circulation and about model 
sensitivity to factional parameterizations (c.f. Killworth 
[1993], Boning [1986], Cummins [1992]). It may be that 
the sensitivity of these model circulations is in part due to 
the singular nature of the topography. We also remark that 
these models may not readily be extended to incorporate 
the important effects of finite amplitude topography. 

A few theoretical studies have shown that the boundary 
currents obtained in an ocean with finite amplitude 
topography differ significantly from those obtained in an 
ocean with infinitesimal topographic variations (e.g. 
Salmon [1992]). These studies, however, largely have 
neglected the effects of inertia. In this note, we consider 
how inertia affects the barotropic circulation in an ocean 
for which the depth undergoes O(l) variations to vanish 
smoothly at the coastlines. In section 2, we present the 
dynamics and review the steady linear circulations and in 
section 3, we determine how inertia modifies the linear 
circulation using numerical simulations. 

2. Shallow water equations 
We consider here the barotropic ocean circulation 

governed by (in nondimensional form) 

Du 3x 
Ro +/xu = -V<|>-£u + — 

Dt dz 

V-u + w =0 

and subject to 

w = 0(z = 0),w = -u-VH(z-- -H(x,y)), 

(1) 

(2) 

(3) 

and the condition that the normal component of the 
transport vanishes on the coastal boundaries. In (1-3), 
(uvw) = u,w) is the velocity in the (eastward, northward, 
vertical) direction with coordinates (x,y,z)',f= yk where y 
is the Coriolis parameter and k the vertical unit vector; 

§ = p + gz where p is the pressure; x = (x*,xy ,0j is the 

stress;    Ro = U/f0L    is    the    Rossby    number    and 

£ = £Ra //0 is the dimensionless coefficient of Rayleigh 

friction. Here, we choose to balance the vorticity input by 
the wind with Rayleigh friction. 

The nondimensional variables in (1-3) are scaled 
conventionally with horizontal/vertical length scales of 
0(4000 km/4 km), a representative flow speed  U of 

O(0.2 km/day) and /„ = ßL = 10"4 sec-1. We next define 

the transport stream function 

(4) 

which follows from (2-3) and combine the depth 
integrated versions of the horizontal components of (1) to 
form the vorticity equation 

3<; Ro—+7 
dt 

V. 
V 

Roq + y 

H 
= -eq + W (5) 

/ 

which is subject to \|/ = 0 on the coastal boundaries. In (5), 

q = vx-u -Vh(H VA\|i) is the relative vorticity (VA 

is     the     horizontal     gradient     operator),     W = V x 
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For a flat bottom ocean with H(x,y) = 1, the steady, 
linear circulation of (5) is described in the classic work of 
Stommel [1948] and consists of an interior wind driven 
(Sverdrup) flow that is closed by a frictional western 
boundary current of width e. For an ocean in which the 
depth goes to zero smoothly at the coast, the western 
boundary current system is asymptotically independent of 
the friction and the flow on the continental slope is 
determined by y/H and by the interior flow (e.g., Salmon 
[1992, 1994]). We also remark that the circulation in a 
basin bounded at the south by the equator (for which y/H 
lines converge at the equatorial point on the western 
boundary) differs significantly from that in a basin with a 
southern coastal boundary (for which closed contours of 
y/H exist) (c.f. Kawase [1993]). Here, only the more 
realistic equatorial case is considered. 

The steady, linear (Ro = 0) circulation described by (5) 
is presented in Figure 1 for a flat bottom ocean and in 
Figure 2 for an ocean with western and northern 
continental shelves. The topography, H(x,y), used in all of 
the experiments (except Figure 1) is presented in Figure 3 
(left). In this initial study, the wind stress curl simply is 
taken as 

W(x,y) = 
-sin 

471 
y-2 

0 

l/2<;y<2 

0<y<l/2 

(6) 

in all experiments. The coefficient of Rayleigh friction 
corresponds to a Stommel layer of one grid point. In the 
absence of topography, the circulation consists of two 
symmetric, counter-rotating gyres (Figure 1, left) and the 
voracity field (Figure 1, right) consists of two isolated, 
oppositely signed layers concentrated at the western 
boundary. In contrast, the linear circulation in the basin 

Figure 1. (left) The transport stream function \|/ and (right) 
vorticity £ that satisfy (5) for Ro = 0, e = 0.01, H(x,y) = 1 and the 
wind stress curl given by (6). In all figures, the solid/ dashed/dot- 
dash contours correspond to positive/negative/zero values and the 
contour interval for y/H^ is 0.1/100. 
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Figure 2. (left) The transport stream function y and (right) 
voracity (multiplied by the ocean depth, see footnote 1) Ht, for the 
conditions of Figure 1, but with the H{x,y) of Figure 3. 

with topography is asymmetric and may be understood by 
viewing (5) as an advection-diffusion equation for V|/ with 
advecting velocity k x V(y/H) and -W the source (c.f. 
Salmon [1992]). The "streamlines" of this "flow" are 
presented in Figure 3, right. The difference between the 
linear topographic and flat bottom circulation is clearly 

exhibited in the vorticity1 field. In the flat bottom ocean, 
the vortex layers are symmetric and isolated, while in the 
ocean with topography, the layers are asymmetric and 
aligned along y/H contours. 
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Figure 3. (left) The ocean depth H(x,y) which varies smoothly 
from zero at the western and northern coasts to unity in the 
interior, (right) The corresponding contours of y/H. 

1 Due to large values of the vorticity in the southwest corner of 
the basin, contours of H£ are presented here. 
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Figure 4. Steady, inertial circulation, (left) \|/ and (right) H(, for the 
conditions of Figure 2 but with Ro = 0.0002. 

3. Numerical Model 
To determine how inertia affects the linear, topographic 

circulation described above, we solve (5) numerically 
using a finite-difference method. We time-step (5) to 
analyze unsteady dynamical processes and to determine 
the stability of the steady circulations. 

Inertial numerical models of the general ocean 
circulation require a subgrid-scale closure scheme to 
parameterize the effects of the scales of motion not 
resolved by the numerical grid. Here, we use an implicit 
closure scheme to finite difference the advective terms in 

t(daysj 

Figure 5. Time-series of the basin integrated total energy E, (7) for 
the conditions of Figure 2 but with Ro = 0.0005. The period of 
eddy formation is O(100 days). 

(5) for which the truncation error corresponds to a 
biharmonic operator on £ in the interior, but requires no 
additional boundary conditions (third-order upwind 
differencing, Leonard [1984]). 

The numerical solutions of (5) are presented for a 
rectangular ocean basin contained in 0 < x <1, 0 < y <2. 
As discussed above, the southern boundary of this model 
ocean is the equator where the boundary conditions of 
cross-equatorial symmetry of the dynamics, forcing and 
topography are applied. The form of the wind stress curl, 
(6), is chosen for simplicity and to reduce the computing 
time necessary to obtain steady-state, nonlinear solutions. 
For all runs shown, the resolution is 100 x 200 and £ = 
0.01 (but see below). 

The effects of weak nonlinearity may be understood by 
considering how advection affects the steady, linear 
circulation presented in Figures 1 and 2. For the flat 
bottom ocean, the effects of weak nonlinearity are well 
known, and, for example, for the subtropical gyre, 
negative relative vorticity is advected from the south to 
the north. Then, to dissipate their excess negative relative 
vorticity, fluid parcels overshoot the latitude where they 
rejoin the Sverdrup interior. For a two gyre circulation in 
a flat bottom ocean, inertia results in the isolated, 
symmetric vortex layers being pulled off the western 
boundary and aligned along the latitude of zero wind 
stress curl where vortex interactions then may occur. For 
an ocean with finite amplitude topography, however, we 
emphasize that the asymmetric vortex layers are aligned in 
the linear approximation. Then, the introduction of inertia 
causes the vortex layers to advect each other 
northeastward (along the axis of alignment), and 
additionally, to draw the weaker layer around the stronger 
layer. This behavior is exhibited by the steady inertial 
solution presented in Figure 4 for which Ro = 0.0002. 
Advection of vorticity has reduced the southwestward 
extent of the tails of the gyres and the asymmetry in the 
strength of the vortex layers has resulted in the bending 
observed at the northern limit of these layers. 

By increasing the magnitude of the wind (Ro = 0.0005), 
the advection becomes strong enough to wrap around and 
pinch off an eddy from the weaker (positive) vorticity 
layer. This eddy formation occurs periodically as may be 
seen in a time-series of a finite difference approximation 
of the basin integrated total energy 

E = \\jj?WydA (7) 

for Ro = 0.0005 (Figure 5). We note that the period of the 
eddy formation is 0(100 days). Figure 6 presents 
snapshots of this process at quarter period intervals. The 
pinching off of an eddy occurs near an energy maxima. 
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Figure 6. The periodic pinching off of an eddy for the conditions of Figure 5. Snapshots of \|/ (left) and He, (right) at times 
corresponding to (top left) maximum energy, (top right) approximately one quarter period past the maximum, (bottom left) minimum 
energy, and (bottom right) approximately one quarter period past the minimum. 

A further increase in the wind (Ro = 0.001) results in 
aperiodic eddy formation.2 Here, in addition to an eddy 
of positive vorticity being entrained in the subtropical 
gyre, an eddy of negative vorticity is entrained 
subsequently in the subpolar gyre. A time-series of E for 
Ro = 0.001 (Figure 7) consists of a high frequency carrier 
signal modulated by a lower frequency envelope. The 

minima in the low frequency envelope appears to 
correspond to the two eddies pinching off nearly 
simultaneously. Snapshots of the circulation exhibiting 
the formation of the positive and negative vorticity eddies 
are presented in Figure 8. Increasing the wind further 
results in more complicated unsteady behavior (not 
shown). 

2We emphasize that a spectral analysis of this process has not yet been 
conducted and will be presented in a future work. 
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Figure 7. The time-series of E, (7) for the conditions of Figure 
2 but with Ro =0.001. 

We remark that the qualitative character of the results 
presented above appear to be independent of the model 
resolution in the sense that for coarser or finer resolutions, 
the sequence of steady circulation, periodic, modulated 
and irregular unsteady eddy formation still occur, but for 
different Rossby numbers (i.e., for Ro = 0.001 and 50 x 
100 resolution, the eddy formation is periodic while for 
200 x 400 resolution, the eddy formation is irregular). A 
future study will report model sensitivity studies in more 
detail. 

Acknowledgments. I am indebted to Rick Salmon for 
helpful discussions and for the final numerical model. This work 
was supported in part by an NSF Mathematical Sciences 
Postdoctoral Research Fellowship and a URC seed money 
award from the University of Hawaii. School of Ocean and 
Earth Science and Technology contribution no. 3915. 

References 

Böning,    C.W.,    1986:    On    the    influence    of   factional 
parameterization in wind-driven ocean circulation models,. 
Dyn. Atmos. Oceans, 10, 63-92. 

Cummins, P.F., 1992: Inertial gyres in decaying and forced 
geostrophic turbulence, J. Mar. Res., 50, 545-566. 

Kawase, M., 1993: Effects of a Concave Bottom Geometry on 
the Upwelling-driven Circulation in an Abyssal Ocean Basin, 
J. Phys. Oceanogr., 23, 400-405. 

Killworth, P.D., 1993: On the Role of Dissipation in Inertial 
Western Boundary Currents, J. Phys. Oceanogr., 23, 539- 
553. 

Leonard, B.P., 1984: Third-order upwinding as a rational basis 
for   computational    fluid    dynamics,    in    Computational 
Techniques and Applications: CTAC-83, J. Noye and C. 
Fletcher, eds. Elsevier North-Holland, 106-120. 

Salmon, R., 1992: A two-layer Gulf Stream over a continental 
slope, J. Mar. Res., 50, 341-365. 

Salmon,  R.,   1994:  Generalized two-layer models of ocean 
circulation, J. Mar. Res., 52, 865-908. 

Stommel, H., 1948: The westward intensification of wind-driven 
ocean currents, Trans. Am. Geophys. Union, 29, 202-206. 



130 BECKER 

,i i 

20       40       60       80      100 20       40       60       80      100 20       40       60       80      100 20       40       60       80      100 

200 

180 

160 

140 

120 

100 

80 

60 

40 

20 

wo,. 

20  40  60  80  100 20  40  60  80  100 20       40       60       80      100 20       40       60       80      100 

Figure 8. Snapshots of \j/ and HÜ, for the conditions of Figure 7 at these times: (upper left) 1184 days (approximately a local maxima 
of the energy), (upper right) 1201 days, (lower left) 1220 days, and (lower right) 1238 days (approximately a local minima of the 
energy). 



Altimetric Observations of Rossby Wave Variability near Topography 
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Abstract. Precise satellite altimetry began with the GEOSAT mission and has reached maturity with the 
TOPEX/POSEIDON mission. The sea surface height measurements from these instruments are capable of 
obtaining near-synoptic temporal coverage with a spatial resolution of order 100-300 km and an accuracy of 
order 4 cm. These sampling characteristics are sufficient to observe Rossby waves at periods longer than a few 
tens of days and wavelengths longer than a few hundred kilometers. Examples of this type of application are 
given and directions for future work are discussed. 

Introduction 

The focus of this paper is on propagating signals, 
especially Rossby waves, that are associated with 
topographic features. It is assumed that such propagating 
signals can have length scales as short as a few hundred 
kilometers and extend over thousands of kilometers. 
Similarly, it is assumed that the time scales can be as 
short as a few tens of days and that the signals can 
remain coherent over a year or more. Studying such 
signals from observations presents a formidable 
challenge, which can probably be met only through the 
use of remotely sensed variables. 

The remote sensing variable of most interest to me is 
the sea surface height measured by satellite-borne 
altimeters. This interest stems from the fact that the sea 
surface height observations, when coupled with the 
hydrostatic approximation, give an estimation of the 
surface pressure field of the ocean. Thus, the satellite 
measurements yield observations of a dynamical variable 
that can be used more or less directly to diagnose the 
dynamics of the observed signals. This is in contrast to 
measurements of sea surface temperature, for example, 
which can change in response to thermodynamic forcing. 

Three altimeters are relevant for the types of studies to 
be discussed in this paper. GEOSAT, which was flown by 
the U.S. Navy for geodetic reasons, returned 2 years of 
repeat cycle data that are particularly appropriate for 
oceanographic investigations. TOPEX/POSEIDON (T/P) 
was launched in 1992 as a joint project of the U.S. and 
France and is unique in that it was designed specifically 
for the purpose of obtaining high quality measurements 
of oceanographic variability. ERS-1, launched by the 
European Space Agency, also carries an altimeter, but 
these data are not discussed in this paper because at 
present the failure of the primary tracking system has 
prevented the determination of precise orbits, which are 
essential. An overview of results from GEOSAT can be 
obtained from JGR-Oceans special issues published in 
March and October of 1990. Also, Mitchum and 
Kilonsky (1995) have given a review of results from 
GEOSAT that focuses on the tropical portions of the 

oceans. T/P results also appear in a special issue of JGR- 
Oceans published in December 1994. 

Mitchum (1994) described an extensive inter- 
comparison of T/P sea surface heights (SSH) and in situ 
sea level observations from tide gauges. The basic result 
(Figure 1) is that for time scales longer than 10 days the 
two datasets agree to about 4 cm rms and have a 
correlation of 0.66. The rms differences can be 
significantly reduced, and the correlations increased, by 
smoothing the data to monthly means. In that paper a 
number of potential problems and biases were 
investigated, and one of these is of particular interest in 
the present context. Specifically, it was shown that for 
several sea level stations it was necessary to allow for 
signals propagating at the local Rossby wave speed (Gill, 
1982) in order to obtain reasonable intercomparisons. 
This correction was necessary because the T/P ground 
track and the tide gauge location do not exactly coincide. 

r = 66% and s.e. = 4cm 

-10 0 10 
sea level (cm) 

Figure 1. TOPEX sea surface height versus sea level data from 
tide gauges. Smoothing over 10-day intervals is performed 
before the data pairs are drawn. The scatter estimate is a robust 
estimate of the rms difference between the data pairs. 
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The station at Rarotonga in the South Pacific is a good 
example (Figure 2). In this case simply ignoring the 
zonal separation between the ground track and the tide 
gauge results in a correlation coefficient of -0.06. If, 
however, the time series are shifted by an amount 
corresponding to westward propagation at the Rossby 
wave speed, which was computed a priori rather than fit, 
the correlation increases to 0.62. Note also that the 
variance of the differences between the two time series 
has decreased by 55% as well. Looking at the series in 
more detail, it is clear that most of this improvement is 
due to a better match during the event that peaked around 
day 410, which had a duration of 100 days or so. It is 
difficult to say without more analysis, though, whether 
this signal is associated with a Rossby wave, an eddy, or 
something else. 

Rarotonga : r = -6% and rms = 12cm 

300 350 400 450 500 550 

Rarotonga w/ propagation : r = 62% and rms = 8cm 

250 300 350 400 450 500 550 600 
days from 1 Jan 1992 

Figure 2. An example of a TOPEX to tide gauge comparison 
that is improved by allowing for Rossby wave propagation. The 
solid curve is sea level at Rarotonga and is the same in the 
upper and lower panels. The circles are the sea surface height 
values from TOPEX. In the upper panel the values are plotted 
at the time of observation, while in the lower panel the times 
are offset by an amount equal to the lag derived from the 
Rossby wave speed (computed to be 5.9 cm/s to the west) and 
the distance from the sea level station to the altimeter's ground 
track. 

This paper describes two clear examples of Rossby 
wave signals observed from altimetric SSH and discusses 
some future directions for study. The first example is 
from an analysis of a Rossby wave signal observed at 
Wake Island in the western Pacific. This study used data 
from the GEOSAT mission and is described in more 
detail by Mitchum (1995a). The second example is from 
the T/P data and discusses a propagating signal found 
north of the Hawaiian Islands (see also Mitchum, 1995b). 

Wake Island 90-day waves 

Wake Island is located in western Pacific near 19°N 
and 166°E. Sea level from the tide gauge there shows an 

intermittent, but relatively large amplitude, oscillation at 
a period near 90 days (Figure 3). The data on this figure 
have been high-pass filtered, and the shaded regions 
mark time periods where the amplitude of the 90-day 
signal, as estimated by a complex demodulation, exceeds 
8 cm. The years in this figure are aligned such that the 
leftmost 2 years on each line are ENSO events. It is 
apparent that the occurrence of the 90-day signals is 
modulated by ENSO, but the lag of 1-2 years is difficult 
to explain. In fact, these signals have been noted earlier 
(K. Wyrtki, personal communication), but the unusual 
phasing and the lack of other sea level records in the area 
made it impossible to diagnose the nature of these 
oscillations. 

Wake Island high-passed saa level : 1972-1991 
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Figure 3. Daily sea level values from Wake Island after high- 
passing with a convolution-type filter having half-amplitude 
response at 200 d. Each line of the plot corresponds to the time 
series from the onset of an ENSO event to the beginning of the 
next event. Vertical lines are placed at 1 Jan of each year. Sea 
level units are cm. The shaded areas mark time periods where a 
complex demodulation analysis indicates that the amplitude of 
the 90-day oscillation is greater than 8 cm. 

The timing of the GEOSAT mission, which produced 
good repeat cycle data from November 1986 to October 
1988, was suitable for an analysis of the 90-day event 
observed at Wake Island in 1988. As discussed earlier for 
Rarotonga, it was apparent from simple correlation 
analyses that the signals were propagating westward at 
the local Rossby wave speed, and an analysis technique 
was devised to fit a zonal propagation speed to the 
GEOSAT space-time series. Briefly (see Mitchum, 
1995a, for details), the calculation takes time series along 
a particular latitude and in an 8° longitude range and 
stacks them using phase lags computed from the 
longitude and an assumed propagation speed. The 
stacked series are then averaged, resulting in a single 
time series that emphasizes the propagating signals. 
Finally, the appropriate propagation speed is selected by 
requiring that the variance of this time series, as 
compared to a time series averaged without any  lags, is 
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maximum. The results of this calculation for a particular 
point in space are estimates of the propagation speed, the 
variance ratio defined above, and a time series that 
emphasizes the propagating part of the signal. 

This calculation was done with the GEOSAT data over 
much of the Pacific north of the equator, and the estimated 
zonal speeds were averaged zonally and plotted as a 
function of latitude (Figure 4). The f2 behavior is 
consistent with Rossby waves and, since this was not 
imposed in any way by the fitting procedure, it serves as 
additional evidence that the propagating 90-day signal 
was in the form of a group of Rossby waves. One problem 
with this interpretation, however, is that the period of 90 
days corresponds to a frequency that is theoretically too 
high to occur at this latitude. Based on an estimate of the 
Rossby radius obtained from several hydrographic profiles 
in this region (56 km), the mimimum period if the waves 
are at their turning latitude should be 120 days. It is 
possible to account for this difference by Doppler-shifting 
if it is assumed that the mean current is westward at 1-2 
cm/s. Whether such a mean current exists is unknown, 
however, so it is only possible to say that the 90-day 
waves are close to their turning latitude. 

Westward propagation speed from Qeosat at 170E 
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Figure 4. The solid circles represent the zonal average of the 
propagation speeds found from the procedure described in the 
text. At each latitude there are approximately 10 independent 
estimates of the propagation speed. The error bars represent 1 
standard deviation about the zonal average. The solid curve 
shows the meridional variation expected for Rossby waves. 

Although the GEOSAT data were very useful in 
characterizing the 90-day oscillations as Rossby waves in 
the vicinity of Wake Island, the real advantage of the 
SSH data is that the complete spatial coverage allows the 
tracking of the waves backward in time in order to locate 
the energy source. The fitting procedure used to estimate 
the wave speeds also returned a SSH dataset that 
emphasized the propagating signals. These data from the 
latitude of Wake Island (19°N) are plotted as a function 
of time and longitude in Figure 5. Similar plots were 
made at other latitudes (not shown) and these show that 
the signals observed at Wake Island are restricted to a 

narrow meridional band. Within this band, of which 
19°N is typical, there is clear propagation to Wake Island 
from approximately 155°W, which corresponds to the 
longitude of the Big Island of Hawaii. Propagating 
signals are not significant east of Hawaii. 

Qeosat heights computed with allowance for propagation 
160'E 170"E 180" 170'W        160'W        150'W        U0"W        130"W        120"W 

tl70'E 
Wake Island 

170'W        160'wt     150-W        140'W        130-W        120'W 
Bra Isl of Hawaii 

Figure 5. GEOSAT time series (computed with allowance for 
propagation) were formed between 160°E and 120°W and 
between 10° and 30°N. This figure shows a time-longitude cut 
along 19°N. This latitude falls close to both Wake Island and 
the Big Island of Hawaii. The slanting features in the left 
portion of the plot are propagating westward at about 7 cm/s. 
Negative sea surface heights are shaded and the contour 
interval is 3 cm. 

The identification of the Big Island of Hawaii as the 
energy source for the Wake Island oscillations is also 
appealing because it helps to account for the phasing of 
the 90-day waves with ENSO events. The travel time 
from the Big Island to Wake Island is 1-2 years, which 
accounts for the observed lag if the energy source is 
active during the ENSO events themselves. There is thus 
no need to invoke unusual lags between the ENSO events 
and the excitation of the 90-day waves. It is still not 
clear, however, what process is responsible for the initial 
energy generation. 

It is known (Patzert, 1969) that the area around the 
Big Island is rich with eddies. Different types of eddies 
are found in the area, however, and several possible 
generation mechanisms are likely. Regardless of how the 
eddies are generated, though, a likely scenario to account 
for the 90-day Rossby waves at Wake Island is that as the 
eddies propagate away from the topography, they decay 
into a train of Rossby waves, as described by Flierl 
(1977). It could be that the eddies are generated in 
response to flow past the Big Island, but the GEOSAT 
data are not adequate to examine this possibility. To 
examine this further, output from a numerical model 
(Hurlburt et al., 1992) was analyzed in the region of the 
Big Island. This analysis does in fact show that westward 
flow anomalies past the island give rise to anticyclonic 
eddies that separate from the topography and move 
westward. The model does not, however, decay these 
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eddies into a Rossby wave train, or reproduce the sea 
level time series at Wake Island. So, for the present, this 
scenario remains speculative. Also, since the agreement 
between model and data was not very good, it was not 
considered useful to diagnose the eddy generation 
mechanism in detail. In the paper referred to earlier 
(Mitchum, 1995a), however, several possibilities are 
discussed in more detail. 

Waves north of the Hawaiian Ridge 

The second example of Rossby wave signals from 
altimetry is from the area north of the Hawaiian islands 
and comes from the T/P dataset, which is significantly 
more accurate than the GEOSAT data. This study was 
motivated by observations from the Hawaiian Ocean 
Time-series (HOT) site (Karl and Lukas, 1995). Briefly, 
the HOT program involves the collection of a variety of 
physical, geochemical, and biological measurements at a 
single deep water location approximately 100 km north 
of the Hawaiian Ridge. The target is to make monthly 
measurements, and the program has been collecting data 
for over 5 years. A more complete description of the 
specific results given below can be found in Mitchum 
(1995b). 

During part of the HOT program, time series of 
dynamic height were estimated from moored inverted 
echo sounders, which were calibrated against CTD data 
to give dynamic height differences from 0-1000 db. 
These measurements revealed a prominent, but 
intermittent, 130-day signal (Chiswell, 1995), and it 
should be noted that similar signals have also been 
observed in GEOSAT and AVHRR measurements (van 
Woert and Price, 1993). It was natural to ask whether the 
T/P data could provide a larger scale diagnosis of the 
nature of these oscillations, and the first question is 
simply whether the T/P SSH data reproduce these signals 
at the HOT site. This was addressed by intercomparing 
the T/P SSH and the dynamic height time series from the 
HOT site (Figure 6). Although the period of overlap in 
the two measurements is only about 6 months long, it is 
clear that the T/P SSH captures the oscillations. 

In order to extend these results to a larger spatial area, 
an extended empirical orthogonal function (EEOF) 
analysis was carried out. This analysis is designed to 
capture propagating features, and the 130-day signals 
were emphasized by high-pass filtering the SSH time 
series prior to the analysis. The main result from the 
EEOF analysis is that the 130-day oscillation is very well 
described by a simple 130-day harmonic with a spatially 
dependent amplitude and phase functions that slowly 
vary in time. Since this alternate description is simpler to 
present and to interpret, the remainder of this discussion 
will focus on the modulations of the amplitude and phase 
of this 130-day sinusoid. 

Time series from HOT site 

0/91 0/92 0/93 0/94 

Figure 6. Combined height series from ES data and T/P data. 
The T/P data are from the crossover point lying immediately 
northeast of the HOT site. The T/P data are interpolated to a 
regular grid via an objective interpolation and then joined to 
the ES height series. The T/P series is lagged by 20 days in 
order to align the high frequency events. This lag was chosen to 
give the best fit between the two series, but it is also consistent 
with the propagation characteristics described in the text. The 
times are given as Julian day/Year. 

The amplitude function is shown in Figure 7. The 
amplitude of the 130-day signal is initially large near 
158°W and just north of the Hawaiian Ridge. The 
amplitude subsequently evolves away to the north and 
west, reaching 165°W after 1 year. If this amplitude 
evolution is interpreted in terms of Rossby wave theory, 
then this implies that the group velocity is to the 
northwest. If this is correct, then the phase velocity 
should be to the southwest. 

The phase of the oscillation is represented somewhat 
differently (Figure 8). In this case it was found that the 
basic pattern of phase did not change appreciably in time, 
and so the phase of the mean harmonic at each point in 
space is shown. Note, however, that the phase is only 
interpretable when the amplitude is significant, so the 
phases at any particular location on this figure should 
only be interpreted as relevant during a temporal subset 
when the amplitude function (Figure 7) is large at that 
location. During the earlier times when the signal is near 
158°W, the phase propagation is indeed to the southwest 
in qualitative agreement with theory. Calculation of the 
actual phase gradient do in fact reproduce the expected 
phase speed as well. 

At the later times, as the area with large amplitudes 
moves north and west, the phase lines align north-south, 
indicating westward phase propagation. There is also a 
suggestion near 165°W that the meridional component of 
the phase velocity has reversed. This is especially 
interesting because it could indicate that the Rossby wave 
packet  has  reached  its  turning  latitude,   and  to  my 
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Figure 7. Amplitude of the 130-day harmonic as a function of 
space and time. The amplitude of a 130-day harmonic is 
computed along all of the T/P ground tracks north of the ridge 
and south of 27°N in an overlapping sequence of 200-day 
intervals. The results are interpolated to a regular spatial grid 
before drawing the images. Each successive panel in the figure 
is separated by just under 50 days, and the time associated with 
each map is given in the upper left hand corner of each panel as 
Julian day/Year. The light gray shows regions where the 
amplitude exceeds 5 cm; the dark gray is where it is greater 
than 10 cm. The broken lines drawn at the latitude of the HOT 
site and at 27°N are shown to aid the evaluation of meridional 
propagation. 
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Figure 8. Spatial description of the phase of the 130-day 
harmonic. To form the phases shown in this figure the sine and 
cosine coefficients from the harmonic fits in overlapping 200- 
day intervals are averaged, and the phase is computed from the 
resulting mean harmonic. This averaging was done only after it 
was noted that the phase maps from the individual 200-day 
intervals were similar in pattern in the regions with significant 
amplitudes. The gray scale is cyclical, with phases of 0° in 
white and phases of 180° and -180° in black. 

knowledge this phenomenon has not been previously 
observed for Rossby waves. As in the case of the Wake 
Island wave, the observed period places the wave close to 
the turning latitude. It is difficult to say at this point 
whether this interpretation is correct, and this problem 
will be revisited when longer time series are available. 

Work in progress 

The use of the altimetric SSH data in the examples 
given in the previous sections has been motivated by first 
finding strong oscillatory signals in other in situ time 
series of sea level or dynamic height. Basically, the better 
temporal coverage and accuracy of the in situ data makes 
it easier to identify interesting signals, after which the 
altimetric data are examined in order to place these point 
time series in a spatial context. Given the success of the 
altimetric SSH, especially for T/P, in reproducing the 
observed signals, it seems reasonable to search for 
propagating signals using the altimetric SSH alone. At 
present I am not satisfied with the techniques tried thus far 
to identify such signals, such as the method described for 
the Wake Island waves. This method does, however, allow 
a simple beginning along this new line of investigation, 
and this calculation was therefore extended to cover the 
Pacific between 10° and 50° in both hemispheres. 

The zonally averaged speed estimates from this 
calculation, which are analogous to those shown in Figure 
5, are shown in Figure 9. The speed estimates match the 
theory well, indicating that Rossby waves are ubiquitous 
and relatively easy to identify from the SSH data. It is 
interesting to note the closer correspondence with theory 
in the southern hemisphere. If the deviations in the fitted 
speeds are indeed due to Doppler-shifting, then this may 
be a consequence of the fact that the subtropical gyre in 
the southern hemisphere is relatively weak as compared to 
the northern gyre. 

The calculation also results in an estimate of the 
variance ratio of the propagating signals relative to the 
stationary ones. When this ratio is large, it indicates that 
the propagating signals are dominant and that the 
calculation is sensible. In fact, the speed estimates shown 
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Figure 9. As in Figure 4, but from the larger scale calculation 
using the T/P sea   surface height data. 
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on Figure 9 only use grid points where the variance ratio 
exceeds 2. A map of points where this occurs (Figure 10) 
shows crudely where the propagating signals are largest. 
Note the tendency for the points to lie in the western half 
of the basin in both hemispheres, again indicating that the 

Points where variance ratio exceeds 2 
~^r 

...:V — 

M 

"•HI**'*!«     M" "IB. 

kltytMthp...~". ..*.tr»iiMt«t|.«.rr.. >rww...»     #...*{ 

Figure 10. The variance ratio (described in the text) is large 
when propagating signals dominate the sea surface height time 
series. Solid circles are placed at grid points where the variance 
ratio is larger than 2. The spatial grid is 1° latitude by 2° 
longitude. 

calculation is indeed capturing Rossby wave activity. Note 
also the relatively large number of points in the southern 
hemisphere. Whether this indicates larger propagating 
signals, smaller background (stationary) signals, or 
problems with the analysis is not known at present. 

An enlargement of the area in the southern hemisphere 
bounded by the box is shown in Figure 11. This region 
was enlarged because it marks a zonal transition from 
relatively weak propagating signals to strong ones, in 
analogy to the behavior westward of the Hawaiian Ridge. 
The analogy appears to be useful, in that the variability 
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Figure 11. Enlargement of Figure 10 to show the effect of the 
Tuamotu Ridge. 

does occur to the west of a topographic feature, namely 
the Tuamotu Ridge. Future studies of the wave and eddy 
signals west of the Hawaiian Ridge will therefore also 
consider this southern hemisphere analog. 

Although the calculation used here to identify 
propagating signals has worked reasonably well in areas 
where the propagating signals are relatively large and 
coherent, it will certainly not work with more subtle 
signals. Better techniques need to be developed and a 
number of possibilities are being investigated. Even with 
this limited tool, however, it is clear that signals 
propagating at the local Rossby wave speed are common, 
and often appear to be linked with topographic features. 

Finally, recall that both of the prominent signals that I 
have described appear at frequencies that suggest these 
waves are found very near their turning latitudes. 
Although this might be coincidental, it is very intriguing. 
According to theory, this latitude should trap energy at 
that period, and verifying this observation in a more 
general way would be a novel application of the altimetric 
SSH data. 

Acknowledgments. This work was supported by NASA 
through the Jet Propulsion Laboratory as part of the TOPEX 
Altimeter Research in Ocean Circulation Mission. 

References 

Chiswell, S., 1995: Intraseasonal oscillations at Station ALOHA, 
north of Oahu, Hawaii. Deep-Sea Res., in press. 

Flierl,  G.,   1977:  The application of linear quasigeostrophic 
dynamics to Gulf Stream Rings, J. Phys. Oceanogr., 7, 365- 
379. 

Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 
Orlando, Florida, 662 pp. 

Hurlburt, H., A. Wallcraft, Z. Sirkes, and E. Metzger, 1992: 
Modeling of the global and Pacific oceans: On the path to 
eddy-resolving ocean prediction, Oceanography, 5, 9-18. 

Karl, D. and R. Lukas, 1995: The Hawaii Ocean Time-series 
(HOT)     program:      Background,      rational     and     field 
implementation. Deep-Sea Res., in press. 

Mitchum, G., 1994: Comparison of TOPEX sea surface heights 
and tide gauge sea levels. J. Geophys. Res., 99, 24,541-24,554. 

Mitchum, G., 1995a: The source of 90-day oscillations at Wake 
Island. J. Geophys. Res., 100, 2459-2476. 

Mitchum, G,  1995b: On using satellite altimetric heights to 
provide a spatial context for the Hawaii Ocean Timeseries 
measurements, Deep-Sea Res., in press. 

Mitchum, G, and B. Kilonsky, 1995: Observations of tropical sea 
level variability from altimeters, To appear in Oceanographic 
Application of Remote Sensing, M. Ikeda and F. Dobson (eds.), 
CRC Press, Boca Raton, FL. 

Patzert, W., 1969: Eddies in Hawaiian waters. Technical Report 
HIG-69-8,  Hawaii  Institute  of Geophysics,  University of 
Hawaii, Honolulu, 51 pp. 

van Woert, M. and J. Price, 1993: GEOSAT and Advanced Very 
High Resolution Radiometer observations of oceanic planetary 
waves adjacent to the Hawaiian Islands. J. Geophys. Res., 98, 
14,619-14,632. 



Some Examples of Topographic Influence on the Abyssal Circulation 

Nelson G. Hogg 
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Abstract. Three different geographical regions are discussed where it would appear that topography might play 
a major, if not dominant, role in the dynamics of the deep circulation. In the Gulf Stream recirculation, although 
topography does alter the distribution of potential vorticity, especially if considered in a two layer analogue, the 
eddies resulting from instability of the stream can homogenize the potential vorticity and give rise to intense 
recirculations. On the other hand the configuration of the western margin topography brings the Deep Western 
Boundary Current into contact with the Gulf Stream at Cape Hatteras. In attempting to negotiate this intersection 
and conserve potential vorticity the Deep Western Boundary Current must flow with the stream as it goes into 
deeper water before being able to escape to the south. Finally, an ambitious international WOCE program known 
as the Deep Basin Experiment, presently being carried out in the Brazil Basin, is described and some 
preliminary results shown. For the deeper layers topography isolates the Antarctic Bottom Water except for 
connecting flows to neighboring basins through a small number of passages. 

Introduction 

Although the upper ocean general circulation seems, 
for the most part, to be unaware of the bottom topography 
except through the constraints of the lateral boundaries 
the deep circulation is profoundly affected by the 
extensive undersea ridge systems as well as the 
configuration of the continental margins. Herein we will 
describe recent observations of the deep flow in two 
areas: the region near the Gulf Stream in the North 
Atlantic and the Brazil Basin of the South Atlantic. 

Recirculations and Topography 

It has been known for some time that the transport of 
the Gulf Stream increases by a factor of 5 from the 
Florida Straits to its maximum near 60°W downstream of 
Cape Hatteras (e.g., Knauss, 1969; Johns et al., 1995) 
and that this increased transport (and associated 
decrease) implies a vigorous recirculation system 
flanking the stream. It now appears that there are at least 
two recirculation gyres of opposite circulation sense and 
roughly equal intensity, one to the north of the stream 
and the other to the south. 

Various explanations exist for this phenomenon 
ranging from buoyancy forcing (Huang, 1990) to eddy 
forcing (e.g., Cessi et al., 1987) to purely inertial 
dynamics (e.g., Marshall and Nurser, 1986; Hogg and 
Stommel, 1985). Considering the stratification to be 
modeled in a two layer system with the thermal wind 
shear of the Gulf Stream causing the lower layer to 
"outcrop" along its northern edge, Hogg and Stommel 
(1985) were able to show that the combined effect on the 
lower layer thickness of the thermocline and bottom 
depth changes could create a region of closed potential 
this to be homogenized by eddy stirring and that zonal 

scales are much longer than meridional, they were able to 
vorticity contours to the north of the stream. Assuming 
develop an analytic model which predicted the right 
order of magnitude of the transport, approximately 30 Sv. 
Of course, in the presence of dissipation there must be 
some forcing. 

Attempts to model this process numerically have been 
made and support the notion that the deep part of the 
recirculation is inertial. Malanotte-Rizzoli et al. (1995) 
simulate the forcing of the northern gyre through use of a 
boundary condition along a southern boundary which 
attempts to mimic the action of Gulf Stream meanders in 
a barotropic model. Only when the geometry contains 
closed potential vorticity contours for the ambient field 
does a vigorous recirculation emerge. In a more realistic 
barotropic model containing an unstable jet Jayne et al. 
(1995) find that closed potential vorticity contours arise 
naturally through the stirring action of the eddies arising 
from the instability of the jet, even without forcing the 
issue through distortions of the bottom topography. 
Hence it would seem that the particular shape of the 
bottom topography is not essential for forcing 
recirculations although it can help. 

In the Synoptic Ocean Prediction Experiment 
(SYNOP) several eddy resolving arrays have been 
deployed across the stream at locations from near Cape 
Hatteras to just west of the Grand Banks. These data have 
been used to estimate eddy vorticity fluxes by Hogg 
(1993) who shows that the deep recirculation is nearly 
inertial and that the deep potential vorticity is nearly 
uniform. This flow is maintained against dissipative 
losses by an eddy "thickness flux" in the manner of 
Holland and Rhines (1980). The depth averaged flow is 
not inertial but is driven by lateral eddy vorticity fluxes. 
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Deep Western Boundary Current— 
Gulf Stream Crossover 

At Cape Hatteras the Gulf Stream from the south 
intersects the DWBC flowing from the north. Hogg and 
Stommel (1985), using similar potential vorticity 
arguments to those for the recirculation, suggested that 
the DWBC would have to flow with the Gulf Stream into 
deeper water before being able to completely cross 
underneath it. It is becoming clearer that the DWBC is a 
multicomponent system with water derived from different 
source locations (Pickart, 1992) and evidence now 
suggests that the simple Hogg and Stommel model is a 
very crude approximation. Tracer measurements show 
that the shallower components are most affected by the 
stream, not surprisingly, and are swept downstream with 
it. The deepest components appear to make the crossing 
with only a modest change in depth (Pickart, 1992). This 
process has been recently modeled with good qualitative 
accuracy by Spall (1995) with a three layer model. 

Brazil Basin 

As part of the World Ocean Circulation Experiment an 
international investigation of processes important to the 
deep circulation, known as the Deep Basin Experiment 
(DBE), has been underway in the Brazil Basin. 
Objectives include quantification of the circulation within 
the three major water masses, Antarctic Intermediate 
Water, North Atlantic Deep Water (NADW) and 
Antarctic Bottom Water (AABW), distinguishing 
between boundary and interior cross isopycnal processes, 
and understanding how the passages connecting the 
Brazil Basin to other deep basins might affect the water 
flowing through them. The field program has a number 
of elements including conventional hydrography, tracer 
measurements and current meter arrays. It also includes 
releases of a large number of neutrally buoyant floats 
within each water mass so as to observe directly the 
circulation and a deliberate tracer release to estimate 
cross-isopycnal mixing rates. 

As the program is underway there is little concrete 
information available to address these objectives. In order 
to gain confidence in the neutrally buoyant floats, called 
RAFOS, which were commercially fabricated for the first 
time, a number were released for shorter periods than the 
ultimate design objective of 2.5 years. Trajectories from 
these early floats are shown in Figure 1. Although these 
are all less than 400 days in length they indicate a flow 
which is predominantly zonal with considerable low 
frequency variability. The zonal aspect is surprising as 
classical pictures of the flow at this NADW level suggest 
a meridional flow, southward near the boundary and a 
northward return flow offshore. It is entirely possible that 
the more complete set of trajectories available at the end 

of the DBE will support this by showing a motion with 
large amplitude zonal sloshing and a slow meridional 
migration. 

The deepest water masses flowing into the Brazil 
Basin are confined within the basin by the surrounding 
ridge system through which there are just four important 
gaps—the Vema and Hunter Channels on the southern 
boundary, the Romanche-Chain fracture zones at the 
equator in the Mid-Atlantic Ridge, and an equatorial 
passage (unnamed) farther west which permits leakage 
into the western North Atlantic. The transport of water 
through these passages has been fairly accurately 
estimated by use of moored current meter arrays in the 
DBE and it appears that there is an excess of about 4 Sv 
of AABW entering from the south over that leaving to 
the north. As the only escape for this water, assuming 
steady state, is a rise upward across isopcnals this 
indicates a basin averaged mixing rate of about 5 
cm2/sec, substantially larger than rates measured in the 
fhermocline elsewhere (Hogg et al., 1982). 

Where this mixing is occurring is presently unknown 
but there will be two tracer releases in the deep water 
within the basin, one in the interior and the other near a 

2500m RAFOS Floats 
 ► <200days  ► 400days 
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Figure 1. Trajectories of neutrally buoyant floats set near 2500 
m depth within the NADW. These vary in length from less than 
200 to 400 days. 



TOPOGRAPHIC INFLUENCE ON ABYSSAL CIRCULATION 139 

boundary to help settle this issue. From a moored array in 
the Vema Channel we calculate cross-channel heat fluxes 
which would support a cross-isopycnal diffusivity of 50 
cm2/sec if they were not neutralized by a compensating 
vertical flux. Such a diffusivity, if distributed all along 
the western boundary would acount for the basin 
averaged value quoted above. 

Summary 

We have explored the deep circulation in three regions 
where the large scale bathymetry might be expected to be 
important to the lowest order dynamics. In the Northern 
Recirculation Gyre of the Gulf Stream, several studies 
have suggested that the geometry formed by the bight 
between the Grand Banks and Cape Hatteras, combined 
with the slope of the thermocline, could create regions of 
closed potential vorticity contours which would be 
favorable for formation of closed circulations. Numerical 
experiments suggest that this is not necessary and that 
the eddy fluxes associated with the instability of the 
stream can homogenize the potential vorticity and give 
rise to such recirculation zones. At Cape Hatteras itself, 
topography is clearly important in determining the 
manner in which the DWBC negotiates its intersection 
with the stream. Finally, early results from the Deep 
Basin Experiment suggesting that the subthermocline 
flow is primarily zonal are at odds with both published 
circulation schemes based on hydrography and the classic 
model of Stommel (1957). This may indicate that cross- 
isopycnal mixing processes are weak in the interior and 
this is consistent with crude estimates obtained from 
moorings in the Vema Channel. 
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Critical Control by Topography - Deep Passages, Straits, and Shelf Fronts 

J.A. Whitehead 
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

Abstract. Saddle points between neighboring deep ocean basins are the sites of unidirectional flow from one basin to the next, 
depending on the source of bottom water. Flow in these sites appears to be critically controlled, so the interface between the bottom 
water and the water above adjusts itself to permit bottom water flow from the basin which contains a source of bottom water into the 
next. Examples in the Atlantic include flow in the Romanche Fracture Zone, the Vema Channel, the Ceara Abyssal plain, the 
Anagada-Jungfern passage, and the Discovery gap, but there are many more. Examples are listed for all oceans along with theoretical 
predictions of volume flux using CTD data archives. These are compared with volume flux estimates using current meters and/or 
geostrophic estimates for four new cases. Ocean straits also critically control bidirectional flows between basins. Theory of the influ- 
ence of rotation on such critical flows is reviewed. Predictions of a number of these cases in the ocean are reviewed and compared 
with ocean estimates of volume flux. Finally, some considerations about fronts on continental shelves are given. A mechanism is 
shown that uses inertia to produce flux across a geostrophic front that separates two fluids of differing density in a rotating fluid when 
the front is forced to be narrower than the Rossby radius. 

1. Introduction 

For over a hundred years, critical control of fluid 
flowing through constrictions has been understood in a 
number of compressible, free surface, stratified or rotat- 
ing fluid situations. One class of these problems com- 
bines stratified and rotating constraints to the fluid as it 
passes over bottom and sidewall constrictions. This 
class has come to be loosely termed "rotating hydrau- 
lics". Problems are typically solved with ocean or 
atmospheric examples in mind. 

This paper reviews a number of ocean-related aspects 
of this problem. It does not exhaustively review the 
theoretical studies to date. Rather, the emphasis is on 
intercomparison of theoretical predictions of volume 
flux with oceanographic estimates based on direct meas- 
urements. The intent is to assess the practical useful- 
ness of the understanding presented here to knowledge 
of the ocean. 

We first review the very simplest concept of critical 
control of a nonrotating fluid. Consider a simple fluid 
flow problem as sketched in Figure 1, where water with 
a free surface in a field of gravity of depth H and veloc- 
ity U is flowing along a channel and encounters a bump 
of size b. Assuming friction is negligible, the equations 
of motion reduce to Bernoulli's equation and conser- 
vation of mass, 

surface deflection t\'=r\/H, bottom bump b' = blH, 

and upstream velocity Froude number F = U/yJ2gH. 

Non Critical p-Ap 

U,H 
specified 

Critical 

Figure 1. Sketch of an idealized flow of fluid along a chan- 
nel with upstream velocity U and depth H, and the adjustment 
to a slowly increasing bottom b. The deflection downward of 
the interface is TJ. 

-«-«T, 
2 

u{ü-b-T\)=UH 

(1.1) 

(1.2) 

is where u is velocity of fluid over the bump and r\ 
downward deflection of the free surface over the bump. 
These two equations can be combined by eliminating u 
to produce the following cubic relation between scaled 

(w-*0S 1 

An easy way to picture these solutions is to investi- 
gate the intersection of the left hand parabola with the 
right hand hyperbola keeping T| a freely varying 
parameter with fixed values of V and F. Two such 
cases are shown in Figure 2. The first, represented by 
theright parabola, hasb'= F = 0.5. There are three points 
of intersection: The leftmost point corresponds to the 
small deviation of V as drawn in Figure 1. This is the 
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physically expected solution since it continuously maps 
to zero deflection as V approaches zero. The middle 

point is a very large deviation and corresponds to a flow 
with local Froude number much greater than one. It 
cannot be physically realized since momentum flux plus 
pressure on the two sides of a control volume between 
upstream and the small bump is unequal. This state is 
known as a conjugate state. It could be produced by a 
large bump between upstream and the small bump, 
since then the large bump would experience pressure 
that would equalize the force and momentum budget. 
The right intersection point is physically forbidden 
since £'+r|' > 1, so the free surface would be below the 

bottom of the bump. 
The left parabola in Figure 2 is shown for b' = 0.6 ; 

the parabola has simply moved to the left by 0.1 unit of 
T|'. At this value of F, the parabola intersects the 
hyperbola at only two points. The left point is located 
where the hyperbola and parabola are tangent. For 
smaller b', both left and middle points have migrated 
along the parabola for slowly increasing V and merged 
at this point. In addition the local Froude num- 
ber F' = 1 at   this   point.      The   right   point   is   still 

unphysical. 

Figure 2. Values of the right and left hand side (a 
hyperbola and parabola, respectively) of equation 1.3. The 
hyperbola (dotted line) is drawn for F=0.1. The rightmost 
parabola corresponds to b' = 0.5 . The leftmost parabola 
corresponds to  £>'=0.6. 

Thus if V is greater than a given value (depending on 
F), the fluid cannot get over the bump. One of the 
upstream conditions must be changed. For example, if 
volume flux is specified, H would need to be bigger. 
Or, if H is fixed (for instance by a large upstream lake), 
U may have to change to allow a flow. Often the fluid 
over the bump adjusts to the critical state. In such 
cases, the topography determines what is happening 
upstream. 

These situations are found in physical oceanography. 
Dense water can accumulate in a basin from either 
surface cooling (in polar latitudes), inflow from an 
adjacent basin, or surface evaporation. We infer that, as 
the dense water accumulated, the interface of the dense 
water rose until it was above sill depth of the deepest 
passage which connects to another basin. The water 
above sill depth could then flow out through the pas- 
sage. When the outflow rate equaled the accumulation 
rate of dense water, the interface ceased to rise and 
steady state was achieved. Volume flux of such out- 
flows are useful measurements of interbasin water 
exchange and hence of fundamental interest in physical 
oceanography and ocean climate considerations. 

We review here some theoretical studies of the criti- 
cal control problem for rotating fluids with possible 
ocean applications. Most have been conducted over the 
past score of years. Geometries include not only a deep 
passage which we will call a "sill" where one water 
mass flows between basins, but also surface passage- 
ways (straits) where flows in both directions inter- 
change water masses. A particular case in which there 
are gappy boundaries, so that one strait might support 
flow in one direction, but return flow is elsewhere, as 
elucidated by the studies of Nof (Nof and Olson 1983, 
Agra and Nof 1993, and Nof 1995) will not be reviewed 
here. Sections 2, 3 and 4 summarize theoretical aspects 
of sill flows, long strait flows, and very wide strait 
flows, respectively. Sections 5 and 6 discuss some 
ocean observations of such flows and some comparison 
with theory. 

2. Sill flow calculations 

Figure 3 shows the balance of three forces (Coriolis, 
inertia, and pressure) that are included in the simplest 
problems of rotating hydraulic control. Other forces 
which could be included in more complicated models 
are acceleration, friction and eddy Reynolds stress. The 
pressure is conventionally determined using the hydro- 
static approximation. 

For larger values of T|' there is no intersection except 
for the right-hand unphysical one, the two other roots of 
the quadratic expressed by equation 1.3 are imaginary. 
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Inertia Coriolis Pressure 

ü-V« + /x«= -g'V/z 

Bernoulli' s Law 

1 

2 
Inertia 

■v +s'h= G 

Conservation of 

  Pressure 

\    / Geostrophy 

potential vorticity    CorioI,s dh 
fv = g' — 

c+ f dx 

Figure 3. Diagram showing the three forces exerted on a 
fluid element and how dynamic relations are derived from 
these three forces. 

These three forces are easily transformed into three 
relations: a geostrophic relation by looking across 
streamlines, the conservation of potential vorticity by 
taking the curl of the equation and using continuity, and 
Bernoulli's law by looking along streamlines. These 
three relations are redundant, and the cross-streamfunc- 
tion derivative of the upstream Bernoulli's function 
must be equal to the upstream potential vorticity. The 
first, pioneering attempt to calculate critical flow along 
a channel (Stern 1972) violated this constraint. 

Flow in the sill region is determined by using any 
two of the three above equations. If the geostrophic and 
potential vorticity equation are used, two constants of 
integration are introduced, but Bernoulli's equation 
eliminates one of them. We show for illustration here 
the simple theory of zero potential vorticity. Fluid of 
density p +Ap lies in an infinitely deep upstream basin 

with surface hu above the lip of a rectangular exit chan- 
nel. Above is still fluid of density p . This problem has 

very simple algebraic solutions that illustrate the flows 
in the channel (Whitehead, Leetmaa and Knox, 1974). 

The geostrophic equation and zero potential vorticity 
equation are 

d x fv 

3v 
Jx~ = -/ 

(2.1) 

(2.2) 

which integrate to 

h = 
2g' 

fv x 

-fx+v 

(2.3) 

(2.4) 

where g' = gAp/p, /is the Coriolis parameter, and h0 

and v0 are two constants of integration. They represent 
water depth and velocity at x=0. Bernoulli's law exists 
along each streamline 

:MH (2.5) 

which can eliminate one constant of integration by 
making it a function of the other. Note that Bernoulli 
potential is g'h    since fluid is stagnant in the upstream 

basin. In problems with finite values of upstream depth, 
(i.e. constant upstream potential vorticity [Gill (1977), 
Pratt and Armi (1987), Whitehead (1989)]), Bernoulli's 
law may hold along all streamlines, but the Bernoulli 
potential is not easy to determine. Fortunately, there are 
some cases where it can be determined for one stream- 
line. 

In such cases, the problem is reduced to determining 
one constant of integration which is found, as we 
explained for the nonrotating example, by calculating 
the critical condition. The simplest such condition is 
that volume flux is maximized through the sill. This 
results in the following predictions for volume flux for a 
rectangular opening. 

otherwise 

Q € 

g'h1 

LJF 

L> Ig'K 

f± 
8g' 

(2.6) 

(2.7) 

where L is width of the channel. Rydberg (1980) 
rejected the maximum volume flux argument, which is 
equivalent to the Froude number of the longest, fastest 
wave equal to one, in favor of having the local Froude 
number be one. This makes sense because Froude 
numbers greater than one would produce Kelvin- 
Helmholtz instability which would lead in turn to mix- 
ing. The resolution of this interesting conflict between 
local and long wavelength control remains unresolved 
by either additional theoretical work or direct observa- 
tion in the laboratory or the ocean. 

The first formula (2.6) is familiar to many ocean- 
ographers. It could be obtained from a simple 
geostrophic calculation if one assumes first that the 
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fluid height on the right-hand side of the sill (looking 
downstream in the northern hemisphere) equals 
upstream height hu and second that the interface inter- 
sects the bottom on the left hand side. The critical con- 
trol calculation justifies the use of hu in this formula. 
Not only does it show this value gives maximum flow, 
but it also connects it to the available upstream potential 
energy through Bernoulli's equation. The second 
formula is familiar to hydraulic engineers in the limit of 
f- 0, which was first determined in the last century. As 
/ is increased from 0, it smoothly connects the non- 
rotating result to equation 2.6. 

If potential vorticity is not zero, the functions 
expressing velocity, height, and volume flux are more 
complicated, but still readily found by common calcu- 
lations. However, the connection of Bernoulli potential 
between upstream and the sill is more challenging. In 
some cases only one streamline preserves Bernoulli 
potential from a point upstream to a point on the sill. 
However, the calculation of maximum flux can be 
accomplished in many cases. Gill (1977) simply speci- 
fied the existence of appropriate currents in the 
upstream basin for constant upstream vorticity and 
graphically determined the volume flux as a function of 
dimensionless parameters. No analytic solutions were 
attained. Whitehead (1989) was able to find analytic 
solutions to volume flux in general but was unable to 
determine analytic solutions for the maximum value. 
Contours of nine values of volume flux from the ana- 
lytic solution are shown in Figure 4. This figure differs 
from a comparable figure (Figure 6) in Whitehead 
1989. There, negative values of fluid depth were 
allowed in the computation, so the curves in a region 
below the volume flux maximum are wrong. This error 
does not effect the computation of critical flow, how- 
ever. Thus, the central finding in that paper - that 
volume flux for this case lies within 22% of the flux for 
the zero potential vorticity solution - still holds. Thus 
the feeling held by many in the 1980s, that the zero 
potential vorticity was essentially incorrect is apparently 
not born out for issues of volume flux. 

Pratt and Armi (1987) investigated the flow patterns 
in the sill region for more general potential vorticity 
distributions and found that gyres and countercurrents 
are possible. Since such cases are characterized by 
upstream currents, Bernoulli potential varies in the 
upstream basin so that comparison of volume fluxes 
with the simple estimates above are not straightforward. 
Given these complications, volume fluxes were not 
determined in these cases, but a variety of issues, such 
as that the control point is at the crest of the sill for a 
certain class of sill geometries were clarified for more 
general flows. 

L/xr 

Figure 4. Contours of normalized volume flux 2Qflg'h2
u as 

a function of normalized right-hand wall depth and normal- 
ized channel width. In the region with horizontal contours, 
the flow has separated from the left-hand wall. 

Both that paper and earlier studies by Borenas and 
Lundberg (1986), and Gill (1977) focused strongly 
upon the implications of the definition of control by the 
geometry of the outlet passage. This is a rich area of 
study since the nature of control from upstream basins 
with more general vorticity conditions through openings 
of more general shape is quite complicated. It is easy to 
visualize, for example, that some fluid might not 
possess enough energy to get through an opening while 
fluid next to it could. In that case, upstream blocking 
might occur which would be connected not with critical 
control of the entire current, but current separation. 
Such a process has the same branch structure used in the 
above papers, but is distinct from control of the entire 
current. Other aspects may be connected with particular 
definitions of critical control. Indeed, Borenas and 
Lundberg conclude that there is a range of parameters 
such that parabolic passageways cannot exert control (in 
the sense they use it). Yet it is difficult for this author 
to think that the sketch in Figure 1 breaks down because 
the channel happens to have a parabolic bottom. Other 
studies (Table 1) have dealt with a variety of other 
issues. This review will concentrate on volume flux 
issues, the rest are covered by Pratt and Lundberg 
(1991). 

Most quantitative comparisons indicate that neither n 
the potential vorticity distribution nor the shape of the 
sill produce very large changes (order greater than one) 
in the volume flux. But unquestionably they produce 
changes of a fractio of order one. Recently, Killworth 
(1994) has shown that the zero potential sill produce 
very large changes (order greater than one) in the 
volume flux. But unquestionably they produce changes 
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Table 1. A List of Theories 

Stern 1972 Trouble with upstream condition 

Whitehead, 
Leetmaa & 
Knox 

1974 Zero potential vorticity, zero 
currents 

Gill 1977 Const, potential vorticity, 
upstream currents imposed 

Rydberg 1980 Local F should = 1 
Shen 1982 Zero potential vorticity, more 

tests 
Pratt 1983 Adjustment to obstacle 

Pratt 1984 Flow near critical speed 

Borenas & 
Lundberg 

1986 Parabolic channel, not controlled? 

Pratt & Armi 1987 Nonuniform potential vorticity 

Whitehead 1989 Comparison of zero and const, 
potential vorticity, application 

Dalziel 1988, 
1990 

Zero potential vorticity exchange 
and control 

Pratt & 
Lundberg 

1991 Review of theory 

Hunkins & 
Whitehead 

1992 Const, potential vorticity 
exchange 

Killworth 1992 Zero potential vorticity and 
shapes, application 

Killworth & 
McDonald 

1993 Zero potential vorticity and 
maximum flux 

Killworth 1994 Zero potential vorticity is 
maximum 

Johnson & 
Ohlsen 

1994 Frictionally modified exchange 

Whitehead & 
Kimura 

1994 Wide exchange flow 

of a fraction of order one. Recently, Killworth (1994) 
has shown that the zero potentialvorticity flow in a 
rectangular channel has the greatest volume flux of all 
possible potential vorticity distributions. This is valid 
for all bottom shapes, and makes the calculation of 
maximum fluxes easier than before. Earlier, Killworth 
and McDonald (1993) had found a maximum bound on 
any flow with non-negative potential vorticity, and 
showed it was roughly like the zero potential vorticity 
relation. 

3.  Strait flow calculations - lock exchange theory 

In an ocean context, we will define lock-exchange 
flow as the flow through straits between basins with two 
different but uniform densities. In formulating prob- 
lems, one could picture a gate which, once removed, 
allows the set-up of a semi-steady exchange of flow and 
counterflow between the basins.    This problem with 

rotation included was analyzed for zero potential vortic- 
ity by Whitehead et al. (1974). In that formulation, a 
somewhat questionable energy conserving formula was 
used. Although laboratory data agreed with the 
theoretical prediction, a more complete theory would be 
useful. Dalziel (1988, 1990) extended the formalism 
introduced by Gill (1977) and obtained a number of 
improvements for openings less than one Rossby radius 
in width. An improvement for wide channels was made 
by Hunkins and Whitehead as reviewed here. The 
model (Figure 5) consisted of two basins separated by a 
channel of depth H. Basin 1 has water of density p i and 

basin 2 has water of greater density. 

Figure 5.   Sketch of a lock-exchange flow through a long 
straight channel. 

The governing equations for the flow in the channel 
are conservation of depth, 

A, (x) + A2 (x) = H (3.1) 

where h\  and A2  are depth of each water in the strait, 
conservation of potential vorticity 
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dx      J       H 

dx / = 
A 

(3.2) 

(3.3) 

and thermal wind between the two layers 

dh, 
/(V2 - vi) = g'-^— (3.4) 

One can derive differential equations for hi, h2, V] and 
v2 as follows: 

Take — of (3.4) and use (3.2) and (3.3) to get 
d x 

dx2     g' 

f .   ~\ 

VH J 
h =-- (3.5) 

We define x as being zero in the middle of the chan- 
nel. The solution of hi is 

H x x 
h   =—hßcosh— +Asm\\—r 

i      2 R R 

and from (3.1), the solution of h\ is 

H x       .     x 
h  = ßcosh Asinh— 

i     2 R R 

(3.6) 

(3.7) 

Gill (1977) showed that the constant potential vorac- 
ity current has a Bernoulli function that is easily deter- 
mined except for a constant. Since there is no dissipa- 
tion in the current, the constant is conserved along 
streamlines. Therefore, the symmetric solution for the 
current extends throughout the entire region from 
behind one nose through the passage to behind the other 
nose. 

To solve for the final constant, the time dependent 
energy equation is used in the form 

a<v») 
2    dt 

+ g(wAp) = 0 (3.10) 

where only the deviation of density A p from a constant 

value p has been retained. The angled brackets denote 

a volume integral. 
We do not know the detailed flow in the nose region, 

but we can assume that the nose is fully developed (see 
Stern 1980, Stern, Whitehead, and Lien Hua 1982, 
Griffiths and Hopfinger 1983). Hence it will be self- 
similar between a time t and a time t + 5 t. The similar- 

ity assumption requires that the volume of the moving 
nose region be unchanging, in which case we can set c,- 
= Q /Aj where Q, is the volume flux of the t* current 
behind the nose and A, is the cross sectional area of the 
current. 

Thus the increase in internal kinetic energy in time 
equals c, times the areal average of kinetic energy 
across the current. These are summed for the two on 
the left and the two on the right to give: 

8'H 
where R = J-—j , and A and B are constants of integra- 

^ I 

tion. 

To solve for velocity, use (3.2) and integrate: 

fx     fRB        x    fRA x n„. 
v, = -— - — a«*--—cosh-+C        (3.8) 

or (3.3) and integrate: 

fx    fRB       x    fRA        x    ^ 
 1 sinn—l cosh—vD 

2       H R     H R 
(3.9) 

where C and D are also constants of integration. 
These constants are found as follows: First, equation 

(3.4) dictates that C - D. Second, assume the height 
profile is antisymmetric about the horizontal centerline 
of the tank, so that B - 0. Because of the symmetry of 
the profile, the assumption of equal and opposite vol- 
ume flux through the strait requires that V] -v2 at x = 0. 
This requires that C = 0, so only the constant A remains 
to be determined. 

9L+9L 
A  A '2 7 

111 112 

jvlh2dx+   lv2hzdx 

(3.11) 

Likewise, the increase in potential energy is equal to 
c, times the area of the current times the vertical dis- 
placement of the center of gravity of each column of 
width dx. The product of these is integrated across the 
currents and summed for the two noses to give: 

n     X/2 ^2 

A2-\i2 2 

O xn Ih        \ 
(3.12) 

dx 

Equations (3.11) and (3.12) are set equal, and since 
Qi = 02, hi = H - hj, and A\ - A2, they simplify to 
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—r +—5-  —11-cosh— H-4sinh— 
IR3      H2

{R\ R) R 

l(i    2A'\ 

(3.13) 

where 

Asinh- 
H 

2R     2 

These two equations are satisfied for the values 

(3.14) 

2R 
- = 2.5940. 

H 
■■ 0.07514. (3.15) 

Since A was the last remaining unknown, volume flux 
can now be determined from the integral 

ß 
JL/2 

-ß,  =     I     hvdx 

X X X 
--fAR\ —cosh 2flsinh  

'2 2/? 2R 

= 0.156 
g'H2 

f 
(3.16) 

Whitehead, Leetmaa, and Knox (1974) used the above 
flat bottom energetics with the admittedly incorrect zero 
potential     vorticity     velocity     profile     to     predict 

0=1/6 IE 
f 

which is 7% higher.   This is consistent 

with the notion that the zero potential vorticity flux is an 
upper bound, although this has not yet been shown to be 
true for the lock-exchange case as Killworth has shown 
for a sill. This volume flux prediction has been checked 
by a laboratory experiment by Hunkins and Whitehead 
(1992). Both the slope and the constant in front agree 
with the data to better than 10%. 

4.  Very wide lock-exchange 

Fronts are frequently encountered at the edges of 
long, straight topography. Whitehead and Kimura 
(1994) explored a mechanism that uses inertia to 
produce flux across a geostrophic front that separates 
two fluids of differing density in a rotating fluid. They 
asked "when the front is forced to be narrower than the 
Rossby Radius R so the full Rossby adjustment cannot 
be reached, will fluid continue to flow in a cross-frontal 
direction and if so at what rate?" The model had flow 
in a submerged horizontal slot between two very deep 
basins containing motionless water. The inviscid rotat- 
ing nonlinear equations for exchange flow were solved 
for two configurations:   The first had Cartesian coor- 

dinates and the slot was infinitely wide but of length / in 
the cross-frontal direction. The second case had cylin- 
drical coordinates. 

The model involved a reservoir of still water in the 
deep ocean separated from a reservoir of still water of 
different density near the coast by a planar shelf of uni- 
form depth. In order to be sure that the upstream fluids 
remain motionless even if there is exchange flow 
between ocean and coastal region, two very deep basins 
instead of shallow layers containing motionless waters 
of differing densities were considered. They are sepa- 
rated by a vertical wall except at mid-depth where there 
is a horizontal slot of depth h, cross-shelf length / and of 
infinite width (see Figure 6). At some previous time the 
slot had been opened, the interface between the two 
fluids slumped from gravity, and fluid started flowing 
back and forth between the basins (as in the Rossby 
adjustment problem). A steady exchange flow is 
reached where low density fluid flows along the top of 
the slot from basin 1 to basin 2 and a counterflow flows 
along the bottom of the slot from basin 2 to basin 1. As 
in most problems, it was assumed that the reservoirs on 
either side of the slot are large but finite and that fluid is 
not being added to either basin from the outside. Thus 
when enough time has elapsed for pressures px and p2 to 
adjust, the volume flux from basin 1 to basin 2 becomes 
the same as the flux from basin 2 to basin 1. We seek to 
calculate Q, the volume flux per unit slot width for the 
case of inviscid fluids. 

Figure 6.   Sketch of a lock-exchange flow through a very 
wide channel. 
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In both layers, the steady inviscid Boussinesq rotat- 
ing shallow water Euler equations were used. The 
along slot velocity is now called vn in the direction of 

y, it obeys 

dv 

d x - = -/ 

which integrates to 

-fx + v 

(4.1) 

(4.2) 

The across slot velocity component is un, and it obeys 
Bernoulli's law 

[< + <} + v'   + ■ 
/>„(*.*) p.((-1")-'*) (4.3) 

P P 
where it has been assumed that fluid is motionless i.e. un 

- v„ = 0 in the reservoirs.   Combining equations for 
both layers, setting volume flux in each layer equal to 
the magnitude of the other results in the following 
equation relating volume flux Q=uhn with deviation of 

the interface 5 . 

;Q IM H 
-i-L- i + *'ö=o 

(4.4) 

To investigate properties of this solution, it is useful to 
define 

Q' = 
4g 

transform to x' = {2xll) -1  and write equation (4.4) in 
the form 

4 
1 1 

.[1-e]2     [1+ef 
: e + a  x (4.5) 

wherea2 = /2/2/g'/iande0t') = 25//i.    The variable 

a is the length of the slot divided by the Rossby radius 
of deformation and is a measure of the strength of 
rotation. The variable e(x') is a freely adjustable 
parameter corresponding to deviation of the interface 
from the midplane of the slot. 

We ask what values of Q' can exist for each a and 
e .   We require that there be a continuous range of 

solutions between the center and the edge at x' - 1. The 
equation there can be rearranged to become 

Q TJ'-"T (4.6) 

This is similar in some ways to the equation 1.3 that 
was given in the introduction. It is easy to see that e is 
negative for Q' > 1, but Q' is unbounded as negative e 
approaches 0. These are supercritical solutions which 
appear to be unphysical. In addition, for 0 < e < 1, a 
real solution is not possible for a > 1. Also , in general 

the term l-oc2/e is negative for 0<e<cc2 in which 

case no flux is possible and flux is zero at e = a . For 

e >a2, flux increases rapidly with e but then it must 
decrease to zero for e = 1. In summary, there is a 

maximum value of flux in the range a2 <e <1 and either 
zero or supercritical flow for other values of e . 

The dependence of Q' on e for 7 values of a2 is 

shown in Figure 7. When a2 approaches zero, flux is 
maximum for e =a2'3 and takes the value of Q = 1 
which is the well known value for the non-rotating 
exchange problem (Yih (1980) pg. 206). 

A two-layer flow in axisymmetric cylindrical geome- 
try can be formulated in a similar manner, but now there 
are edge conditions for the interface at the inner and 
outer radius. 
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Figure 7. Normalized volume flux Q' as a Figure 7 
Normalized volume flux function of scaled interface 
displacement at the edge of the slot for different rotation rates. 

Volume flux F is 
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F = 
2%r^ti 

vv^i1^^1-«-8:! 
y2

e,[l-e:J-eo[l-e;J 

(4.7) 

where y = r / r. and a / r /g'/i are dimensionless 

variables expressing the effects of the two radii and 
rotation, respectively. The free parameters denoting the 
deviation of the interface from midplane are 
e. = 28.//!   and    e    =28   /A.    As in the Cartesian 11 o o 
case, flux is scaled by the term outside the brackets 
which we presume is the solution of the nonrotating 
problem. 

5.   Oceanic observations of sill flows 

Numerous measurements or estimates of velocity in 
the vicinity of sills have been made. A number of these 
are listed in Table 2. This is not an exhaustive list, but a 
collection of studies with data that either give volume 
flux measurements or contain measurements from which 
estimates can be obtained. The location of a number of 
these are shown in the three maps in Figure 8. The 
magnitude of volume flux varies from about 10"2 Sv. to 
well over one, depending upon the size of the basin. 
Most exhibit clear cross-channel tilt, a sign of influence 
of earth rotation. Indeed, geostrophic estimates have 
been made of the speeds of many currents. 

Four of the examples listed above will be compared 
with an estimate from the idealized theory from Section 
2. To make this comparison, a methodology used ear- 
lier (Whitehead 1989) will be used again. Application 
requires the adoption of a value of Ap/p , upstream 

height over the sill, channel width L and the local 
Coriolis parameter. With these four parameters, volume 
flux can be predicted using either equation 2.6 or 2.7 
which we repeat here for convenience: 

Q 
g'h1 
° it 

"2/" 
L> 

2s'h 

otherwise 

-(f)1 fL1 

(5.1) 

(5.2) 

Figure 8. Locations of some sills (unidirectional arrows) 
and straits (bidirectional arrows), a) Atlantic ocean with 
peripheral seas, b) Pacific ocean, c) Indian ocean. Light 
grey: <400 m. Dark grey: >5000 m. 
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Other Sills: 

Windward Passage 
Amirante Passage 
Filchner Depression 

[Southern Weddell Sea] 
Indonesian Philippine Basin 

South Sandwich Island 

Arc Gap 
Ecuador Trench into 

Panama Basin 
Nintyeast Ridge 

Table 2. Flux Estimates Through Deep Ocean Sills 

Denmark Strait 2.9 Sv., Dickson, Gmitrowicz and Watson (1990), 
Dickson and Brown (1994). 

Charlie Gibbs Fracture Zone 2.4 Sv., Saunders (1994). 
Discovery Gap 0.21 Sv., Saunders (1987). 
Bornholm Strait 0.02 Sv., Petren and Walin (1975). 
Iceland Faeroe Passage, no direct measurements Dickson assigns 1.0 

Sv. from indirect considerations 
Faeroe Bank Channel   1.5-1.9 Sv., Borenas and Lundberg (1988) 
They also did both a parabolic and rectangular hydraulic control 
is the point of zero velocity of current measurements;  1.9 Sv., 

Saunders (1990). 
Windward passage (to Cayman Basin), unknown. 
Anegada-Jungfern Passage 0.056 Sv., Stalcup, Metcalf and Johnson 

(1975)   Also contains estimate from WLK theory of 0.04 Sv. 
Strait of Sicily eastward flow not estimated directly by Grancini and 

Michelato (1987), who say the current meter data fully support the 
hydrographic results which they review as: 0.6 to 0.8 Sv. by Morel 
(1971), 0.65 Sv. by Molcard (1972), 1.23 Sv. by Garzoh and 

Maillard'(1976), 1.23 Sv. from Geostrophy, 1.21 Sv. by Bethoux 
(1979) using WLK. 

Vema Gap 2.1 to 2.3 Sv. using geostrophy, McCartney et al. (1991). 
Ceara Abyssal  Plain between 0.8  and 2 Sv., Whitehead and 
Worthington (1982).   > 4 Sv. from Geostrophy,   McCartney and 
Curry (1993), Luyten et al.  (1993).  2.1 Sv„ Hall, McCartney and 
Whitehead (in prep). 

Romanche Fracture Mercier (in prep). Hydraulic estimate 2 Sv., 
Mercier and Bryden. (1994) 
Vema Channel 4 Sv., Hogg, Biscaye, Gardener, and Schmitz, (1982). 

New number, Hogg et al (in prep). 
Samoan Passage    1.0, 5.6 and 4.8 geostrophic estimates Johnson, 

Rudnick and Taft (1994). 6 Sv., Rudnick (in prep.). 
Shag Rocks Passage overflow events detected (Zenk 1981) 

To estimate A p/p , we will select at least two density 

profiles from CTD or bottle data, one upstream and one 
downstream of the sill. The profiles must extend to the 
depth of the sill, and the greatest density difference 
between upstream and downstream will be used. The 
sill depth is found from bathymetric charts. The depth 
at which the upstream and downstream profiles diverge 
will be called the bifurcation depth. The sill depth is 
subtracted from the "bifurcation depth" to determine hu. 
The width of the opening at the bifurcation depth will 
be used to determine L. 

This method was used earlier to predict a volume flux at 
four oceanic sills: the Denmark Strait, the ridge between 
Iceland and the Faeroe Islands, the Ceara abyssal plain, 
and the Vema passage. These fluxes were compared to 

compared to flow estimates using the current meter data 
for flow through three of the four passages. The fourth 
was erroneously compared to geostrophic estimates by 
Steele et al (1962) downstream of the Iceland-Faeroe 
ridge which should include overflows from the Faeroe- 
Scotland ridge as well as the Iceland-Faeroe overflow. 
The predictions of volume flux were all greater than the 
direct measurements by factors ranging from 1.6 to 4.1. 
More recent modern measurements will change those 
factors; a new version of the table with the latest 
estimates is found in the first four lines of Table 3. 
Since the mid-1980s, measurements of volume flux 
have been made through a number of additional 
passageways. We repeat the test of this method of 
predicting flux for four more cases which are discussed 

in turn. 

The first is Discovery gap (Saunders 1987), which 
connects the Madeira Abyssal Plain which is west of 
North Africa in the East Atlantic, with the Iberian 
Abyssal Plain which is west of Portugal and Spain. 
Water of Antarctic origin (colder than = 2.1 C) flows 
northward through this gap with a volume flux esti- 
mated as 0.2 Sv. Information for our prediction is 
shown in Figure 9. Data were taken from Saunder's 
Figure 3 - an along flow section. Upstream conditions 
were complicated by an unmistakable cross stream tilt 
that signified a current of unknown origin. From Figure 
9b, the bifurcation depth was taken to be 4000 m, the 
reported sill depth was 4600 m, so Ap was taken to be 

10"5. This produces a Rossby radius R=4 km whereas 
the gap width is about 80K for the 4000 m contour, so 
the rapidly rotating formula is used. It predicts volume 
flows of 0.2 Sv. There is an unusual amount of room 
for adjustment of this value, and we could easily predict 
a value smaller than half as big, or more than three 
times bigger. 

The second is the Samoa passage (Figure 10). Data 
are taken from Geosecs pacific stations 251 and 252 
(upstream) and 253 and 257 (downstream). This gives 
a bifurcation depth of 3950 m. The bathymetric map, 
traced from the Gebco map shows a width of 240 km at 
this depth. Since Reid and Lonsdale (1974) report a sill 
depth of 4770 m, ha = 820 m and A p/p =3 x 10" . 

Rossby radius computed from these numbers is R=33 
km so the rapid rotating limit should be used. This 
gives Q=4.6 Sv. Rudnick (pri. comm.) has recently 
recovered a moored array in this area and reports 6 Sv. 
This is the first instance where the hydraulics prediction 
is less than estimate based on current meter measure- 
ments. 
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Table 3. Data and predictions for eight sills, four reviewed and updated from Whitehead (1989) and four new ones 

Sill Ap 

P 

xlO4 

H / L R Q Qobs Ratio Cit. 

(m) s-'xlO4 (km) (km) Sv. Sv. Qo/Q 

Denmark Strait. 3 580 1.3 350 14 3.9 2.9 1.34 Dickson et al., 1990 

Iceland Faeroe 5.8 400 1.3 400 17 3.6 1.0 3.6 Dickson et al„ 1990 

Ceara Ab. Plain 0.5 430 0.1 700 66 4.6 2.1 2.2 Hall Pri Comm 

Vema Channel 1 1540 0.7 446 24 16.3 6 2.7 Hogg Pri Comm 

Discovery Gap 0.1 600 0.87 80 4 .21 .21 1 Saunders, 1987 

Faeroe-Scotland 5 400 2 20 7 9 1.9 1.05 Saunders, 1990 

Samoa Passage 0.3 820 0.2 240 33 4.6 6 0.76 Rudnick Pri Comm 

Vema Gap 1 950 0.28 9 35 3.1 2.1 1.4 McCartney et al, 1991 

The first is Discovery gap (Saunders 1987), which 
connects the Madeira Abyssal Plain which is west of 
North Africa in the East Atlantic, with the Iberian 
Abyssal Plain which is west of Portugal and Spain. 
Water of Antarctic origin (colder than =2.1 C) flows 
northward through this gap with a volume flux esti- 
mated as 0.2 Sv. Information for our prediction is 
shown in Figure 9. Data were taken from Saunder's 
Figure 3 - an along flow section. Upstream conditions 
were complicated by an unmistakable cross stream tilt 
that signified a current of unknown origin. From Figure 
9b, the bifurcation depth was taken to be 4000 m, the 
reported sill depth was 4600 m, so A p was taken to be 

10"5. This produces a Rossby radius R=4 km whereas 
the gap width is about 80K for the 4000 m contour, so 
the rapidly rotating formula is used. It predicts volume 
flows of 0.2 Sv. There is an unusual amount of room 
for adjustment of this value, and we could easily predict 
a value smaller than half as big, or more than three 
times bigger. 

The second is the Samoa passage (Figure 10). Data 
are taken from Geosecs pacific stations 251 and 252 
(upstream) and 253 and 257 (downstream). This gives 
a bifurcation depth of 3950 m. The bathymetric map, 
traced from the Gebco map shows a width of 240 km at 
this depth. Since Reid and Lonsdale (1974) report a sill 
depth of 4770 m, ha = 820 m and Ap/p =3 x 10"5. 

Rossby radius computed from these numbers is R=33 
km so the rapid rotating limit should be used. This 
gives Q=4.6 Sv. Rudnick (pri. comm.) has recently 
recovered a moored array in this area and reports 6 Sv. 
This is the first instance where the hydraulics prediction 
is less than estimate based on current meter measure- 
ments. 

The third example is the Vema gap (Figure 11). His- 
torically, the source of the bottom waters of the tropical 
Eastern Atlantic was considered to be a flow through 

the Romanch fracture zone that lies almost exactly on 
the equator. However, the work of Vangriesheim 
(1980) and Eittreim et al (1983) indicated that the flow 
through the Vema fracture zone was a major contributor 
to the water in the eastern North Atlantic. This gap lies 
at about 11°N in the Mid-Atlantic ridge. Recently, 
McCartney et al (1991) have measured a flux of 2.1 to 
2.3 Sv through the Vema Gap. The data for this 
example is shown in Figure 11. From it we take ha = 
950 m, d = 10"\ which, along with f = 2.8 x 10"5 s"1 and 
g = 9.8 m/s2, predicts a Rossby radius of 49 km. This is 
wider than the passage width L - 9 km, so equation 5.2 
is used to predict volume flux. With the above 
numbers, this comes out to be 4.4 Sv. This is a little 
over twice the geostrophic estimate. Corrections to the 
hydraulic estimate could be made by accounting for the 
tapering of the walls of the gap, for the influence of 
continuous stratification and possibly for friction (Pratt 
1986). 

The fourth is the Scotland-Faeroe passage (Figure 
12), estimated by Saunders (1990) to be 1.9 Sv. This 
example did not work well using two stations from 
Geosecs, probably because both stations were in regions 
where there were surface currents associated with fresh 
water near the topography. The bifurcation diagram is 
made using 2880 stations from the NODC data atlas. 
Stations with the deepest bifurcation have a bifurcation 
depth of 500. Nearby station pairs that are closer to the 
shelf have significantly shallower bifurcation depth. The 
sill depth is reported to be 900 m which gives 
Ap/p = 5x10^. This gives R=l km. Using L=20, the 
rapid rotation limit is used. The prediction is 2 Sv., 
whereas Saunders reports 1.9 Sv. Borenas and 
Lundberg (1988) used a parabolic bottom and selected 
the 3°C isotherm and also got good agreement with 
Saunders' measurement. 
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Figure 9a.    Map showing the 4000, 4500 and 4700 m 
contours in the vicinity of Discovery gap 
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Figure 9b.     Density (corrected to surface pressure) versus 
depth upstream and downstream of Discovery gap. 

All the results are shown in Table 3. It is clear that 
the predictions approach the measured values in most 
cases. But still the method must be used with caution if 
additional currents are present. Otherwise the predic- 
tion has unrealistically great values of hu and flux is All 
the results are shown in Table 3. It is clear that the 
predictions approach the measured values in most cases. 
But still the method must be used with caution if 
additional currents are present.   Otherwise the predic- 

tion has unrealistically great values of ha and flux is 
greatly overpredicted. So far, only one prediction out 
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 T  

Figure 10a. Map showing the 4000, 4500 and 5000 m 
bottom contours near the Samoan Passage. Locations of the 
four GEOSECS stations are also shown. 
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Figure 10b. Density (corrected to 4000 m ) versus depth for 
the four GEOSECS stations upstream and downstream of the 
Samoan passage. 

of eight, the prediction for the Samoa passage, is less 
than the measurements. (Actually assorted other esti- 
mates have been made, but they have not adhered to the 
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Figure 11a.   Map showing   the 3500, 4000 and 4500 m 
contours near Vema gap. 
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Figure lib. Density versus depth for selected stations 
upstream and downstream of Vema gap. 

present methodology). Although it would only take a 
small alteration of the bifurcation diagram to alter the 
prediction, it is not probable that values over 6 Sv. 
could be reached, so the Samoan passage may actually 
be a case where the upper boundedness of the theory 
doesn't apply. The Samoa passage is very rough and 
irregular, and possibly the topography produces an 
effect as though more than one passage wall were 
present. 

6. Oceanic estimates of exchange flows 

Lock exchange has now been used in numerous ocean 
applications; some examples are the Straits of Gibraltar, 

Figure 12a. Map showing the 500, 800 and 1000 m 
contours near the Iceland-Faeroe passage. 

1.0275 1.0280 

Q. 
CD 
Q 

1000- 

2000 L 
Ap=5x10" 

Figure 12b. Density versus depth for 2880 stations 
upstream and downstream of the Iceland-Faeroe passage. 

Spencer Gulf, Chesapeake Bay, Delaware Bay, and 
Funka Bay. Table 4 contains a list of such straits for 
which at least partial information of flux through the 
opening is given. Here we use these formulas for the 
connecting passage between the Baltic and the North 
Sea. 

Table 4. Strait Flows 

Fram Strait 
Gulf of Lyons 
Gaspe' Current 
Spencer Gulf 
Vancouver Island 
Tiran Strait 

Skagerrak 
Adriatic Shelf 
Chesapeake Bay 
Funka Bay 
Bass Strait 
Red Sea 

Strait of Gibraltar 
Belle Isle 
Gulf of Mexico 
Tsugaru Strait 
Bosporus 
Suez Canal 
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In the Baltic, Petren and Walin (1975) measured the 
flow of salty bottom water into the Baltic through the 
Bornholm Strait during the period of June 1973 to 
December 1974. They used geostrophic calculations 
and gel current meters to estimate that the bottom salty 
water volume flux was somewhere between 11,500 to 
17,200 m3/s. This depended upon the limiting salinity 
used, which ranged from 8.25 to 9.575 700 and upon the 
method of averaging. The volume flux estimate was 
used along with salt conservation considerations of the 
outflow of surface water with salinity of 8700 to esti- 
mate how much river inflow would be needed so that 
the flux of salt is zero. They calculated a fresh water 
discharge of 9,400 to 12,000 which is reasonably close 
to the measured mean fresh water supply to the Baltic, 
which averaged 14,000 m3/s for the period 1951 - 1970. 

Their reason for measuring the flux of deep water 
through the Bornholm Strait was that such flows are 
steadier than the flows in the entrance regions. For 
instance, the Baltic has a narrow, shallow (~ 18m) 
entrance region, and currents in the region are variable 
due to variations in surface level. Such variations make 
measurements difficult unless taken for very long peri- 
ods of time. We can, however, use a lock-exchange 
estimate using the considerations in Bye and Whitehead 
(1975) to predict the salinity difference between the 
deep and shallow water in the Baltic. This will assume 
that salinity difference is controlled by exchange flow in 
the Baltic entrance, in response to the mean fresh water 
supply of 14,000 m3/s. In this the balances of volume 
flux Q and salt flux are 

Q =Q +Q. 

S.Q.=SQ 

(6.1) 

(6.2) 

where ß=0.71xl0~3£g/l/7oo is the coefficient of 
density change due to change in salinity, H is depth of 
the sill, p =1.01 is average density of the water and/ 

= 1.2 x 10"4 s"1 is the Coriolis parameter for 55°N. This 
formula applies to steady flow in a flat channel of both 
length and width greater than Rossby radius (to be cal- 
culated post facto), and it is assumed that both Q ~Q, 

and S ~ S  . Equations (6.3) and (6.4) are combined to 
o i 

eliminate Q0 and a salinity difference is predicted to be 

A5= 
6p/5gr 

gßtf2 
(6.5) 

Using g = 9.8 m/s, H = 18 m, S, = 18700, Qr = 14,000 
m3/s, and the above values for /, ß and p, the formula 

predicts salinity difference between outflow and inflow 
is8.3700. 

We next calculate volume flux from (6.4), and it is 
25,700 m3/s, which is close to the value of the outflows 
estimated by Petren and Walin. Since Qr is roughly the 
same magnitude as Q0, they both are roughly twice the 
value of the inflow. Therefore, the assumption that 
Q ~Q is relatively poor. If the salinity of the inflow- 

ing water with 8700 was used, we would predict a salin- 
ity difference of about 2/3 as large as the present 
prediction. In that case, the volume flux, which is 
linearly proportional to salinity difference, would also 
be 2/3 of the present value. 

Finally the Rossby radius of deformation can be cal- 
culated from the formula 

lfgßAS//^ (6.6) 

where subscripts i, o, and r stand for into the Baltic, out 
of the Baltic and from river inflow, respectively. In 
this, we assume that Qr and St are fixed by climatologi- 
cal factors and specified, whereas the other quantities 
can vary. Equations (6.1) and (6.2) can be combined to 
give 

Q AS = S Q (6.3) 

and it is 1.75 km using the above values. 
The same technique has been used for a number of 

other basins. These are listed in Table 5. Again it is 
clear that predictions approach the measured values in 
many cases. The test is deliberately crude, but it is 
applied to a number of examples over a wide range of 
parameters, so that the suitability of the calculations can 
be assessed for future, more thorough studies. 

where AS = S -S .   A dynamic condition relating the 

volume flux to the density difference between inflowing 
and outflowing water in a shallow sill region is: 

Q  = 
gApH2 ^gfiASH1 

6p/ 6p/ 
(6.4) 

Closing Remarks 

By employing the very simplest theory and by delib- 
erately using easily obtainable archival data, we indicate 
that to a crude first approximation, the simple control- 
flow formulas produce sensible estimates of inter-basin 
flux. Our comparisons depend on having ocean esti- 
mates of flux through the opening. Fortunately, since 
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Table 5. Flux and density difference estimates for some oceanic strait flows. 

Strait FWFlux H f L 

(m3/s) (m)        s'xlO4       (km) (km) 

Ap 

P 

xlO4 

Q 

Sv. 

Ap 
obs Cit. 

xlO4 

Gibraltar 300 1.0 12 20 2 .8 3 Whitehead et al, 1974 

Spencer Gulf -200 40 .8 50 3.2 6.8 0.02 9 Bye & Whitehead, 1975 

Chesapeake Bay 2237 10 .9 19 4 50 0.01 65 Whitehead, 1989 

Funka Bay * 80 1.0 21 3.9 * .03 3 Miyakeetal.,1988 

Fram 104 200 1.4 >200 5.0 7 0.3 7 Hunkins & Whitehead, 1992 

Baltic 14,000 18 1.2 100 1.75 6 0.03 9 Present 

* This information was not used for this study. 

That crude first approximation, the simple control-flow 
formulas produce sensible estimates of inter-basin flux. 
Our comparisons depend on having ocean estimates of 
flux through the opening. Fortunately, since flow 
through such constrictions is often concentrated, 
superior oceanographic estimates of flux, velocity and 
time dependence can be made in such regions. This has 
attracted a sizable number of oceanographers to make 
measurements in such regions. Consequently, the num- 
ber of comparisons has steadily risen from the three or 
four in the mid-1970s to over 20 now. Thus, the range 
of parameters over which tests like these have been 
made is steadily increasing. 

Along with the improvement in the ocean data, 
numerous theoretical advances have been made. Most 
of them concern assorted effects from variable potential 
vorticity. These effects include altered upstream flow 
patterns and control behavior. No significant effects 
upon volume flux have been reported by the varation of 
potential vorticity unless such variation produces very 
large upstream currents. A few studies have been made 
of the role of friction and time dependence. Two areas 
needing work, but with little or nothing done to date, 
are numerical modeling and effects of continuous 
stratification. 

In the ocean, we know almost nothing about the local 
aspects of such flows. What is the nature of a real 
upstream flow? How much does local topography 
influence the currents? Is there significant dynamic 
influence by nearby currents? Is friction enhanced by 
the concentrated currents, and if so, where? Is vertical 
mixing influenced near the control region, as it is 
known to be downstream of the control point? Is verti- 
cal mixing enhanced in certain regions such as on the 
left hand side where currents are greatest? Is side or 
bottom friction enhanced there? I hope that the answers 
to some of these questions will be found by future 
studies. 
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A Simple Model of Abyssal Flow 

Rick Salmon 

Scripps Institution of Oceanography, University of California at San Diego, La Jolla Ca 92093-0225 

Abstract. The planetary geostrophic equations (PGE) have special properties that greatly facilitate analytical and 
numerical solution. In particular, when the potential vorticity is assumed to be an arbitrarily prescribed function of 
the buoyancy, then the ideal three-dimensional PGE exactly reduce to a pair of coupled equations in two space 
dimensions. As an example of this method of reduction. I offer a simple model of abyssal flow in the southwestern 
Pacific. 

I, among many others, have advocated the use of ocean 
models based upon the planetary geostrophic equations 
(hereafter PGE), 
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Here, 0 is the latitude, X the longitude, z is the vertical 
distance, r the radius of the Earth, T is the buoyancy 
(which I will call temperature), and the other symbols 
have their conventional meanings. Wind- and thermal 
forcing terms can also be appended. 

The defining characteristic of the PGE (1-2) is their 
complete neglect of inertia, leading to linear equations of 
motion except for the advection of temperature in (2). 
However, this single nonlinearity is enough to make the 
PGE dynamics both challenging and very rich. Neverthe- 
less, because of their relative simplicity (compared to say, 
the primitive equations) the PGE have a number of 
important advantages. 

First, numerical solutions of the PGE (with steady 
forcing) seem always to approach a steady state. This 
effectively reduces the number of independent variables 
by one, and it means that if only the final steady state is of 

interest, it can usually be found using numerical relaxation 
methods that are much more efficient than time-stepping. 

Second, since the PGE omit the advection of moment- 
um, they do not require a diffusive (i.e., Laplacian) 
friction. In fact, the simpler Rayleigh friction in (1) is 
sufficient to meet boundary conditions of no-normal-flow 
at rigid boundaries provided that the ocean depth vanishes 
smoothly at the coastline (Salmon, 1986, 1992). 
(However, if any part of the boundary is vertical, then the 
vertical momentum equation (lc) must also contain a 
Rayleigh friction term.) The simpler Rayleigh friction 
leads to a much simpler boundary- and internal-layer 
structure and greatly facilitates analytical and numerical 
solution. 

Third, analytical and numerical solutions of the PGE 
contain internal boundary layers of thickness K1/2, 
corresponding to the ocean's mean thermocline (Salmon 
1990, Salmon and Hollerbach 1991) and leading to a 
picture of the subtropical ocean as two inhomogeneous 
layers in which temperature diffusion is unimportant, 
separated by a thin region in which T changes rapidly and 
diffusion is important no matter how small the value o/K. 
This result calls into question the many attempts to 
explain the structure of the main thermocline on the basis 
of the ideal (K=0) equations and to justify such 
explanation by appeal to the smallness of measured values 
of K. 

Finally, on account of their simplicity, the ideal PGE 
admit an exact reduction from three to two space 
dimensions. This reduction, which leads to equations that 
generalize the conventional two-layer PGE equations, 
further facilitates analytical and numerical solution. In 
this brief report on work in progress, we show how the 
reduction principle can be used to obtain a simple 
equation governing the flow of a dense layer of fluid 
along the ocean bottom. The simplicity of the dynamics 
offsets the difficulty of incorporating real bathymetry and 
makes the results easier to understand. 

The basic idea of reduction goes back to Welander 
(1971) and Needier (1971). In the ideal-fluid limit 
(e=K=0), the PGE conserve the temperature and potential 
vorticity on fluid particles, 
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Therefore, the ansatz, 

dT 
f— = G(T), 

dz 
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(4) 

where G() is an arbitrary function is consistent, in that 
sense that if (4) holds at some initial time, it then holds at 
all future times. But (4) integrates immediately to 

T=F 
f 

■+s(k,e,t) (5) 

where F"{) is another arbitrary function, related to G, and 
the primes, which denote differentiation, are introduced 
for later convenience. S(k,Q,t) is a function of integration, 
independent of z, which must be determined by 
substituting (5) back into (1-2). The result (still assuming 
e=K=0) is 

2   dS 
rf — +  

dt    cose d(X,Q) 

1    d(P,S)        1     dD 

/sinG dX 
= 0, (6) 

an evolution equation for SCk,&,t) in which the vertical 
coordinate z does not appear. 

The S-equation (6) contains two additional dependent 
variables, P(X,Q,t) and D(X,Q,t), which are determined by 
boundary conditions at the top and bottom of the ocean. 
If these boundary conditions are taken to be no-normal- 
flow at the ocean surface and bottom, then D is easily 
determined, and P (or alternatively \\i, the streamfunction 
for the vertically integrated horizontal velocity) is 
determined by a second equation, also containing S. The 
dynamics then reduce to a pair of coupled equations in 
S(X,Q,t) and yCk,Q,t), which together determine the whole 
flow. Salmon (1994) called these the generalized two- 
layer equations (GTLE), because they reduce to the 
conventional, two-homogeneous-layer analogue of (1-2) 
when the arbitrary function F"() in (5) is chosen to be a 
Heaviside function. However, other choices of F"{) were 
found to be both more realistic and numerically 
convenient. In particular, the conventional two-layer 
model is an inconvenient basis for numerical modeling 
because of the difficulty in following the outcropping line 
at which the meniscus between the layers intersects the 
ocean surface or bottom. However, if two nearly 
homogeneous layers are really wanted, then F"{) can be 
chosen to be a function that changes rapidly but 
continuously between temperature values corresponding 
to the two layers. The outcropping lines are then regions 
of rapid but continuous temperature change, which need 
not be explicitly followed. 

Of course, full-basin solutions require wind- and 
thermal forcing, and the PGE can satisfy coastal boundary 

conditions of no net transport across coastlines only if 
e * 0. Moreover, if the model ocean spans the equator, 
then the ansatz (5) itself contains a singularity at/= 0. To 
avoid this singularity, Salmon (1994) generalized (5) to 

T=F" 

V^l 
: + 5(A,,9,0 (7) 

where f0 is a small constant. With T of the form (7), the 
linear equations (1) and no-normal-flow boundary 
conditions can still be completely satisfied; they serve to 
determine the velocity field (u,v,w) in terms of 77. 
However, substitution of this velocity field and (7) back 
into (2) no longer yields a z-independent equation. This is 
because of the modification of (5) to (7) and because 
forcing, friction, and diffusion anyway destroy the 
conservation properties (3) on which (5) relies. Salmon 
(1994) therefore replaced (2) by its vertical average. The 
resulting equation, which is essentially (6) with forcing 
and dissipation terms appended, has "three-dimensional 
accuracy" except at very low latitude, where the/0 term in 
(7) is significant, and the GTLE have the character of a 
Galerkin approximation. For many further details, refer to 
Salmon (1994). 

/O 

Jl A- 

I 

^-77   1   iii   , "i 

Figure 1. A simple model of the flow of dense water along a 
bumpy ocean bottom—the so-called one-and-one-half layer 
model. The water above the moving layer is assumed to be at 
rest. 

In this note, we consider an ansatz of the general form (5) 
or (7) that leads to dynamics even simpler than the 
generalized two-layer equation. This new model, which 
could accurately be described as a generalized one-and- 
one-half layer model, bears the same relation to the simple 
model of abyssal flow shown in Figure 1, as the GTLE 
bear to the conventional two-layer model. In Figure 1, the 
upper fluid layer is assumed to be infinitely deep and at 
rest, so that (neglecting the inertia, the lower-layer 
dynamics are governed by 

-fv = - 
8      frl 

"cos6 dX 
■zu 
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+fu = ev 
r ae 

(8) 
dh     3 

dt    dX 

hu 

rcosQ ) 

1 
+ - 

-cos9 30 
-(/zvcos9) = 0 

where h is the thickness of the moving layer, r) = h- H is 
the height of the interface between the layers, and g' is the 
reduced gravity. Eliminating u and v yields a single 
equation for h, 

f       " 

dh 
h-H, 

- + - 
,2        2 
f +e 

-ft 

dt     r   cos 9 

eg'V 

3(^,9) (9) 

A 2 
V(h-H) 

Now consider the more general case in which the 
temperature is given by (5), but still approaches a uniform 
value (conveniently taken to be zero) as z->°°. This 
imposes the condition F"(°°) = 0on the profile function. 
The quantities P and D are now determined by the 
requirements that the horizontal velocity (u,v) vanish as 
z->°o and that there be no flow through the ocean bottom 
at z = -H. The ideal (e = 0) S-equation (6) takes the form 
of a "bottom-layer" potential vorticity equation, 

dt 

F\q)  dq       F"{q)   d(H,q) 

where 

r  sineaa.    r /cos9 3(71,6) 

H 
q = S , 

/ 

= 0,       (10) 

(11) 

and F"\q) is the potential vorticity jTz at the ocean 
bottom. The second term in (10) induces a westward 
propagation of q at speed determined by q itself; the third 
term propagates q along isobaths in the sense of clockwise 
propagation around deeps in the southern hemisphere. 

Next, assuming e * 0, adopting (7) instead of (5), and 
following the procedure summarized after (7), we obtain 
the frictional generalization of (10), namely 

dq r F\q)  dq 

3f     V/2+/o2(/2+e2)r2sine^ 
(12) 

/ F"(q)  d(H,q) 

(/2+e2)r2cos9 d(K,Q) 
■ diffusion 

where the right-hand side stands for relatively simple 
diffusion terms which will not be written out. In the 
special case 

r&y. 
0, ^>o 

^<o 
(13) 

in which the profile function is a step function, (12) 
reduces exactly to (9) with q= -hJf (the layer-depth 
potential vorticity). 

I have used (12) as the basis for a simple numerical 
model of bottom water flowing northward in the 
southwestern Pacific. Observations (Mantyla and Reid 
1983, Taft et al. 1991) show that the densest abyssal water 
enters the North Pacific through the Samoa Passage at 
10°S, 170°W. I solve (12) on an open computational 
domain extending from 25°S to 5CS, and from 180° to 
160°W, including the Samoa Passage and several 
apparently less important passages for the northward 
moving bottom water. Refer to Figure 2. The temperature 
profile function is a "smooth step," 

Fw(^ = |r0[tanh(^/A)-l] (14) 

with constant amplitude T0 and "step-width" A chosen to 
agree roughly with the local Levitus data. The boundary 
conditions are fixed q (i.e., fixed temperature) on the 
computational domain. The Rayleigh damping coefficient 
e is 0.15 times a representative value of/. 

The calculation begins from a state (Figure 2, top) in 
which the cold bottom water is pressed against the 
southern computational boundary at 25 °S. As time 
increases, this cold water spreads northward, steered by 
the bathymetry in the potential vorticity equation (12). 
After 128 days (Figure 3a), the cold, dense water has 
filled the Tonga Trench, turning westward (with the axis 
of the trench around the Samoa Islands. By 558 days 
(Figure 3b), significant flow is also occurring around the 
eastern side of the islands. By 1192 days (Figure 3c) cold 
water is spilling through the Samoa Passage and through a 
shallower passage in the Robbie Ridge at 175°W. The 
maximum current speed of 9.8 km day"1 in the Samoa 
Passage agrees well with recent direct measurements of 
the current (Dan Rudnick personal communication) 

Figure 4 shows three temperature sections at 1563 days. 
The north-south section at mid-domain (Figure 4, bottom) 
passing through the Samoa Passage shows that the cold 
water has nearly reached the northern computational 
boundary. A section along 17°S (Figure 4, middle) shows 
how the cold water has filled up the abyss south of Samoa. 
The top section in Figure 4 corresponds to the broken line 
on Figure 2 (bottom) and crosses the axes of all the 
important passages into the North Pacific. This top section 
shows the coldest water flowing northward through the 
Samoa Passage, but cold water is also flowing northward 
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through the passes in the Robbie Ridge, and to the east of 
the Manihiki Plateau. 

180° 170°W 

25°S 5°S 

INITIAL ISOTHERMS 

\ MANIHIKI PLATEAU 

160°W 

Figure 2. The ocean depth (bottom) and initial temperature 
(top) in a mid-domain section along 170°W in the preliminary 
study of the northward spread of bottom water in the southwest 
Pacific. The computational domain is open, with boundary 
conditions of prescribed temperature. The model topography is a 
smoother version of the "etopo-5 topography with a grid spacing 
of 0.1667 degrees in latitude and longitude. 

The initial-value calculation summarized on Figures 2 
to 4 is mainly intended to show the feasibility of using 
reduced-PGE models with realistic bathymetry. I chose 
the Samoa Passage for its importance as a source of North 
Pacific abyssal water and because the assumption of a 
level-of-no-motion far above the bottom is perhaps easier 
to defend there than in other places. With one-sixth- 
degree resolution (121 by 121 grids) the calculation 
required three hours CPU time on a Sparc-120 
workstation. Thus even higher spatial resolution and a 
broader computational domain are quite feasible. I am 
particularly interested in the influence of spatial resolution 
(i.e., the very small scales in the bathymetry) on the 
solutions. 

Figure 3. The temperature (contours) and horizontal velocity 
(arrows) at the ocean bottom at three successive times in the 
numerical solution of (13) with the bottom topography shown in 
Figure 2. (a) The flow after 128 days, (b) after 558 days, (c) 
after 1192 days. ■* 
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MANIHIKI PLATEAU 

ROBBIE RIDGE 

SAMOA PASSAGE 
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NIUE SAMOA 

Figure 4. Temperature after 1563 days along 170°W (bottom), 
17°S (middle), and (top) along the dashed line shown on Figure 
3, which crosses the axes of all the major passages into the 
North Pacific. The densest water and highest flow speeds occur 
in the Samoa Passage, but the top section also shows significant 
deep flow through the pass in the Robbie Ridge, and east of the 
Manihiki Plateau. 

Of course it is a great conceit to imagine that one can 
explain the observed ocean flow with no inertia 
whatsoever; with the highly constrained buoyancy (7) 
required for reduction to two space dimensions; or without 
separate equations for the temperature and salinity. And I 
am certainly aware of the widely held opinion that flow 
through some deep ocean passes is hydraulically (and 
therefore inertially) controlled. But for me it is very 
important to start with dynamics, like (12), which is 
simple enough that its solutions can be physically 
understood, this simple dynamics will certainly not 
explain everything that is observed, but what it can 
explain can at least be understood. However, my general 
strategy is grounded in the belief that accurate 
incorporation of realistic bathymetry may actually be 
more important than much of the "higher order" physics. 



Realistic-Bathymetry, Small-Dissipation Solutions 
for the North Atlantic/Caribbean 
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Abstract 
New solutions for non-inertial barotropic flow in the North Atlantic/Caribbean are presented using realistic 
bathymetry and using a technique that enables relaxation to solution at much smaller values of friction 
than have previously been presented. The technique consists of exploiting the dynamical significance, in the 
barotropic case, of contours of h/f, where h is the depth of the ocean and / is the Coriolis parameter. A 
triangulation of the entire domain based upon points which lie on a small finite number of these contours is 
constructed. The result is a hybrid advection-diffusion, upwind-finite-element scheme, in which the advective 
upwinding part is substantially less numerically diffusive than standard advective upwinding methods for 
finite-element schemes. In particular, in the absence of closed contours of h/f and with no explicit diffusion, 
the scheme would be exactly hyperbolic, in that the solutions on neighbouring contours of h/f would be 
independent of each other. 

Introduction 

In a Boussinesq fluid, density and potential vor- 
ticity are both conserved on fluid particles, in the 
absence of forcing and dissipation. It follows that, 
if we postulate a functional relationship between 
density and potential at some initial instant, that 
functional relationship will hold for all time. In 
a recent paper, Salmon (1994) has shown how to 
make use of this fact to derive a class of mod- 
els suitable for modelling large-scale ocean cir- 
culation. The crucial step is to use the "plane- 
tary geostrophic" or "thermocline" equations, for 
which the potential vorticity q is given by 

Q = f dz (i) 

where / is the Coriolis parameter and 6 is the 
buoyancy. The ansatz 

f 
d0_ 

dz 
F{0) 

may then be integrated to 

6 = G[j + S(x,y,t) 

(2) 

(3) 

To ensure static stability of the ocean, G(-) is 
taken to be a monotonic function of its argument. 
The dependent variable S is then related via an 

1 Permanent affiliation: Department of Mathematics, 
Imperial College, 180 Queen's Gate, London, SW7 2BZ, 
UK 

invertible function to the surface temperature. If 
G(-) is chosen to vary rapidly in the neighbour- 
hood of zero, to simulate a thermocline, fS may 
be then be interpreted as the thermocline depth. 

The simplest choice of G(-) is G = 0. This 
corresponds to the case of a homogeneous ocean. 
The equation to be solved is then 

J u 
h 

= fc.V x (I)-V.(iv*)        (4) 

where h is the ocean depth, V is the transport 
streamfunction, r is the wind stress, and e is 
a Rayleigh friction introduced in the horizontal 
momentum equation. The equation (4) is an 
advection-diffusion equation for ip, in which the 
advection takes place along lines of constant f/h. 

If the domain consists of only open contours 
of f/h, which connect the eastern and western 
boundaries of the domain at the equator, the sign 
of the diffusion is such that boundary layers, in 
which advection and diffusion balance, may ex- 
ist at the western boundary but not at the east- 
ern one. However, realistic bathymetry requires 
that we be able to cope with closed contours of 
f/h, such as are encountered in the North At- 
lantic in the neighbourhood of the Azores, and in 
the Caribbean basins. 

The numerical model 

A numerical model was designed and constructed 
to solve (4) in an arbitrary geometry.    We re- 
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quired that the model should not diffuse ip across 
//Mines, except at a rate proportional to e - in 
other words, the discretization of the advective 
terra should introduce no numerical diffusion in 
the cross- {f/h) direction. 

This was achieved by using a hybrid scheme, in 
which the advective term is discretized using third- 
order upwinding along f/h lines, and the diffusive 
term is discretized using a finite element method. 

The discretization proceeds as follows: 

1. Contour the domain of interest at prescribed 
values of h/f. 

2. Adjust the node distribution along the con- 
tours such that the local distance between 
adjacent nodes on the contour is approxi- 
mately equal to the local distance between 
contours. 

3. Obtain a Delaunay triangulation of the do- 
main based on the nodes obtained from step 
2 (see, for example, Weatherill, 1992, for a 
description of the algorithm). 

4. Obtain the trial functions Ni for each ver- 
tex, such that Ni is one at vertex i, 0 at 
neighbouring vertices, and linearly interpo- 
lated between. 

5. Solve (4) as follows: 

ZV(*.f)J».», + 
fh2k.Vx(£)Ni   + 

J2 ^jhkej{2NiyNj.SINk + NkVNi.VNj) 

= 0   for alii     (5) 

where J(ip, h/f)j is sum of weighted values of ip at 
node j and other nodes on the same h/f contour 
corresponding to an upwind-difference representa- 
tion of J(tp, h/f) at node j. 

Equation (5) is solved by simultaneous relax- 
ation. The relaxation method employed consists 
of sweeping along successive h/f contours. Thus, 

Figure 1. 
contours. 

Contours show the f/h contours used in the calculation.   There are 30 contour levels, giving 189 
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in the limit of small e, a good approximation to 
ip is obtained, at least for open contours of h/ f, 
after a single iteration. 

Results 

The North-Atlantic/Caribbean basin was dis- 
cretized using contours are 30 levels of h/f. The 
contours are shown in Figure 1. Using the node- 
spacing algorithm described above, the Delaunay 
triangulation shown in Figure 2 was obtained. 
Taking the forcing from annual-averaged Heller- 
man k. Rosenstein (1983) winds, solutions were 
obtained at 3 values of c. 0.001, 0.0033 and 0.01. 

The solution obtained for e = 0.001 is shown 
in Figure 3. Two features suggest that this value 
of e may be too small to be appropriate for the 
barotropic model. 

Firstly, the transport in the sub-tropical gyre is 
found to be 42 Sverdrups. This is slightly larger 
than the 30-35 Sverdrups suggested by Schmitz 
& McCartney (1993). A larger value of friction 
would be expected to reduce the transport. 

Secondly, there is almost no significant sub- 
polar gyre. This suggests that the influence of f/h 

contours is too strong, particularly in shallow re- 
gions. To appreciate this, consider first the case of 
a flat-bottomed ocean. In the flat-bottomed case, 
the value of </> is obtained by integrating the wind 
stress curl from east to west. At latitudes where 
the wind stress curl is positive, which are typically 
in sub-polar regions, corresponding to a cyclonic 
subpolar gyre, the cyclonic gyre builds up imme- 
diately as one integrates westward along a line of 
constant latitude. On the other hand, integrating 
along lines of constant f/h, we see that nearly all 
the ///i-contours in the region of cyclonic wind 
stress curl originate in the southeast corner of the 
domain, and pass through a region of substan- 
tial anticyclonic wind stress curl (see Hellerman k 
Rosenstein, op. cit.). Greater diffusion will cause 
"memory loss" in an otherwise-hyperbolic system, 
and so a larger value of < could be expected to re- 
store the sub-polar gyre which would be obtained 
in a flat-bottomed ocean. 

There is a third significant difference between 
the solution shown in Figure 3 and the circulation 
in the North Atlantic: there is almost no flow be- 
tween the Atlantic and Caribbean basins. Partic- 
ularly, the Gulf Stream through the Florida straits 

Figure 2. The triangulation based on the contours of f/h shown in figure 1. There are a total of 71582 vertices, 

141407 triangles and 212991 edges shown in the figure. 
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is replaced by a flow of equivalent, strength on the 
seaward side of the Antilles. Although it is possi- 
ble that this could also be rectified by increasing 
the value of e, this seems less likely, since a higher 
value of diffusion is likely to reduce flow though 
restricted passages. 

Figures 4 and 5 show the solutions obtained 
for e = 0.0033 and e = 0.01 respectively. As pre- 
dicted, the maximum transport in the sub-tropical 
gyre decreases from 42 Sverdrups to 35 in the case 
of e = 0.0033 and 29 in the case e = 0.01. For 
these values of e the sub-polar gyre remains very 
weak, and the exchange between the Atlantic and 
Caribbean basins is seen to decrease as c is in- 
creased, as predicted. It appears that even larger 
values of e are required to restore the sub-polar 
gyre in the barotropic model. However, since the 
solution for e = 0.01 already appears quite dif- 
fusive when compared with the observed circula- 
tion in the North Atlantic, an investigation of this 
point has not been undertaken. 

Discussion 

The flow obtained from the barotropic model 
is clearly not in agreement with observations in 
every respect. However, the magnitude of the cir- 
culation in the subtropical gyre is approximately 
correct. Preliminary experiments with a baro- 
clinic model (not shown) have demonstrated that 
baroclinicity can enhance separation of the west- 
ern boundary current, restoring a sub-polar gyre 
in the Labrador and Greenland seas. 

A further discrepancy between the flow shown 
in Figures 3-5 and observations is the lack of flow 
through the Florida Straits. This appears to sig- 
nify that the effect of topography is exaggerated 
in a barotropic model. The effect of baroclinicity 
on the path of the Gulf Stream remains the prin- 
cipal unanswered question in this research, and is 
currently being addressed. 

Figure 3. Streamfunction for barotropic relaxation in North Atlantic, forced by Hellerman & Rosenstein (1983) 
annual-averaged winds, e = 0.001, corresponding to an e-boundary-layer thickness of 6.4km. The darker lines 
correspond to positive (i.e. anticyclonic) values of ip, and the lighter lines correspond to negative (i.e. cyclonic) 
values. The maximum value of tp, found just off Blake Plateau, corresponds to a subtropical gyre transport of 42 
Sverdrups 
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Figure 4. Streamfunction for barotropic relaxation in 
North Atlantic, forced by Hellerman & Rosenstein (1983) 
annual-averaged winds, e = 0.0033, corresponding to an 
e-boundary-layer thickness of 20 km. The maximum 
value of ip, found just off Blake Plateau, corresponds 
to a subtropical gyre transport of 35 Sverdrups 

Figure 5. Streamfunction for barotropic relaxation in 
North Atlantic, forced by Hellerman & Rosenstein (1983) 
annual-averaged winds, e = 0.01, corresponding to an 
e-boundary-layer thickness of 64km. The maximum value of 
ip, found just off Blake Plateau, corresponds to a subtropical 

gyre transport of 35 Sverdrups 
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Abstract. The orientation of an anisotropic topographic feature in a large-scale flow will affect the vorticity 
production that results from the topography-flow interaction. This in turn affects the amount of form drag that 
the ambient flow experiences. For quasi-geostrophic flow over a hill with an elliptical cross section in the horizontal, 
it is shown that the strength of the form drag depends not only on the magnitude of the angle that the topographic 
axis makes to the oncoming stream, but also on the sign of that angle. For sufficiently low topography, it is found 
that a positive angle of attack leads to a stronger form drag than that obtained with the corresponding negative 
angle. For strong topography, this relation is reversed, with the negative angle then resulting in the stronger form 
drag. 

Introduction 

We explore how the local vorticity distribution over 
topography changes as a function of the orientation 
of the topography with respect to the ambient large- 
scale flow. Our original motivation in this line of in- 
quiry stemmed from recent work showing that the 
Antarctic Circumpolar Current's strength is strongly 
affected by the underlying topography. The dynami- 
cal balance of the Antarctic Circumpolar Current has 
long been a mystery. Bottom friction and continen- 
tal borders alone are insufficient to absorb the mo- 
mentum input from wind forcing. The simulations 
of McWilliams, Holland and Chow (1978), Wolffand 
Olbers (1989) and Treguier and McWilliams (1990) 
have gone a long way toward proving the hypoth- 
esis that the input from wind stress is ultimately 
balanced through form stress involving submerged 
ridges. The ridges under the Antarctic Circumpolar 
Current are not oriented meridionally, perpendicular 
to the mean current, but rather are at oblique angles 
(e.g., Macquarie Ridge, South East Indian Ridge, Pa- 
cific Antarctic Ridge, etc.). Treguier and McWilliams 
(1990) included randomly generated topographies in 
their studies, and Wolff, Meier-Reimer, and Olbers 
(1991) included a realistic representation of the Mac- 
quarie Ridge Complex. Another reason for interest in 
the effects of changing the flow-topography orienta- 
tion follows from the fact that local flow over topog- 

raphy will depend on this orientation, and this local 
flow will be important in determining the distribution 
of temperature, nutrients and, hence, biology over the 
topography. For example, in the Southern California 
Bight there are several banks of elliptical shape (e.g., 
Nidever Bank). When the direction of the large-scale 
current in this region changes, one expects the current 
regime over the bank to change (including the distri- 
bution of the regions of strongest upwelling). The 
local flow then determines the distribution of plank- 
ton and predators over the bank (Genin 1987). Simi- 
lar comments could be made about seamounts which 
have an elongated structure (e.g. Horizon Guyot) (cf. 
Genin, Noble and Lonsdale 1989). 

The general question of large-scale flow over to- 
pography in a rotating environment has been subject 
to very intense investigation due to the many pos- 
sible applications to both the atmosphere and the 
oceans. In particular, the flow over bottom irregu- 
larities such as seamounts is an important source of 
eddy variability in the oceans. Also, the interaction 
of the flow with the topography produces a reaction 
on the flow called form drag that can, in both at- 
mospheric and oceanic applications, significantly re- 
tard or block the oncoming flow. Numerous studies 
of flow-topography interaction have been performed 
with analytical, numerical and laboratory methods. 
For purposes of analysis and intuitive understanding, 
many of these studies have focused on models using 
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isolated, circularly-symmetric hills. Excellent histori- 
cal reviews of that work can be found in Huppert and 
Bryan (1976), Johnson (1978), Bannon (1980), and 
Verron and Le Provost (1985). For such simplified 
models, the question of orientation of the topogra- 
phy with respect to the flow does not come into ques- 
tion. However, those models point out a basic asym- 
metry of the flow over topography problem, in that 
vortex tube compression always produces an anticy- 
clone above a hill and this advects the fluid around 
the hill in the anticyclonic direction. We will see be- 
low, that for non-circularly symmetric topographies, 
the basic asymmetry of the flow interacts with the 
asymmetry of the topography in a way that produces 
a dependence on the orientation of the topography 
for vorticity production and for form drag. Consider, 
for example, Figure 1. Two configurations are shown 
(from above) in which a large-scale flow crosses an 
elliptical topography. The situations look symmetric, 
but, in fact, the form drag is different in the two cases. 
This will be explained in detail below. 

Of course, there are already many notable works 
that examine flow-topography interactions with a 
model of topography more complicated than the cir- 
cularly symmetric hill. Merkine and Kalnay-Rivas 
(1976) consider an elliptical topography with two ori- 
entations, cross stream and along stream. Pierrehum- 
bert and Malguzzi (1984) consider a dipolar topo- 
graphic forcing (but with a single orientation). Cook 
and Held (1992) have investigated flow over an el- 
liptical topography, with a single orientation, in a 
general circulation model. We should also note that 
there have been many excellent studies of flow over 
elongated topography in the form of ridges. In most 
cases, however, the ridge is of infinite extent and ori- 
ented perpendicular to the flow. An exception is the 
study by Boyer (1971) who considers flow over a ridge 
of infinite extent at an angle to the large-scale flow. 
This list of examples does not even begin to mention 
all of the studies with irregular or random topogra- 
phy or those with actual representations of features 
on the earth's surface. On the whole, however, there 
have not been any systematic studies of the effects of 
orientation of anisotropic topography of finite extent. 

For flow in a rotating environment, the simplest 
model that captures the essential effects of vortex 
tube compression/stretching is the quasi-geostrophic 
model. Within the context of that model, in section 
2, we set up the basic equations for the problem of 
determining how the local flow around the topogra- 
phy depends on the orientation of that topography 

Figure 1. Schematic of large-scale flow over elliptical 
hills. In which case will the drag be greater, for the (a) 
positive angle of attack or for the (b) negative angle of 
attack? 

with respect to the large-scale flow. In section 3, we 
give the results of simulations that show how the vor- 
ticity distribution over the topography depends on 
the orientation ofthat topography in the current. In 
section 4, we examine the dependence of the form 
drag on the topographic orientation, and relate the 
results to the vorticity distributions described previ- 
ously in section 3. We develop the perturbation the- 
ory for the case of weak topography, and compare the 
predictions to results from the simulations. Further- 
more, we present a simple point-vortex model that 
helps to explain the transition from the behavior of 
the form drag as a function of the angle of attack, as 
observed in the weak topographic regime, to the very 
different behavior observed in the strong topographic 
regime. This report is a greatly expanded version of 
Carnevale, Purini, Orlandi and Cavazza (1995). 
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The Model 

The variation of the flow with topographic orien- 
tation is captured, in simplest form, by the quasi- 
geostrophic model for a single homogeneous layer un- 
der a rigid lid. For this model to be appropriate first 
requires that the rotation rate of the environment is 
sufficiently high so as to dominate local advective pro- 
cesses. The relative importance of rotation can be 
measured by the Rossby number, which is defined by 

(1) 

where L is a typical horizontal scale for the topog- 
raphy, f is the Coriolis parameter, which is twice the 
rotation rate, Q, and U is the velocity of the oncom- 
ing stream. For e sufficiently small, the flow will be 
in geostrophic balance, that is, the pressure force, in- 
cluding the centrifugal force, is balanced entirely by 
the Coriolis force in the momentum equation. Thus 
we have 

2S7xu=- —, (2) 
P 

where u is the velocity of the flow and p is the fluid 
density, which we will assume is constant, and p is 
the thermodynamic pressure plus the potential for the 
centrifugal force.  Taking Q to be in the z-direction, 
we can write the components of the geostrophic flow 
as 

l_dp 

fpdy 

1 dp 

fpox 
in the x and y directions respectively, and the pressure 
is constant in the z-direction. Further, assuming that 
the rotation rate does not vary with position, and us- 
ing incompressibility, it follows that if there is no flow 
through the upper surface, the flow is entirely two- 
dimensional (the Taylor-Proudman theorem). The 
streamfunction for this flow can be taken as propor- 
tional to the pressure: 

(3) 

(4) 

* = 4- P_ 

fp 
(5) 

Furthermore, we assume that the layer thickness 
variation is a small fraction of the mean depth. The 
essence of the quasi-geostrophic model then is the hor- 
izontal advection of potential vorticity defined by 

q = V2tf+ /i. (6) 

h is the scaled topography given by h = fAH/H0, 
—HQ is the average depth, and AH is the height of 
the bottom above the mean bottom level. Thus the 
quasi-geostrophic evolution equation is given by 

dq 
J(*,3) = -rC + ^V2C, 

where J is the Jacobian defined as usual by 

J(A,B)   =   AxBy-AyBx. 

(7) 

(8) 

This is the simplest model which captures the effect 
of vortex tube stretching due to passage over topo- 
graphic features. Besides the advection, we have also 
included two viscous effects: a bottom drag due to Ek- 
man pumping, and a horizontal diffusion of relative 
vorticity. For a systematic derivation of the quasi- 
geostrophic evolution equation, see Pedlosky (1987). 

We need to define a model of a confined asymmet- 
ric topography. The studies of Verron and Le Provost 
(1985) were performed with a Gaussian shaped topog- 
raphy, which in our notation would be 

h(x,y) = h0e-^
2+y2VR2 

(9) 

with R a constant. As a simple generalization of this 
form to elongated structures, we take 

h(x, y) = h0e' -(r'
2/a2+y'V*2) (10) 

where the coordinates x' and ?/ are just the old coor- 
dinates x and y rotated by the angle of attack of the 
topography with respect to the oncoming stream, as 
defined in Figure 2. Specifically 

x = x cos a — y sin a 

a; sin a + ycos a, 

(11) 

(12) 

where a and 6 define the major and minor axes of 
the contour of topography at the level with value 
h(x,y) = e_1. 

This topography is confined in the sense that its 
height a few lengths R from the origin is negligible 
for our purposes. This is the topography used for the 
discussion in the next two sections. It will be conve- 
nient to designate specific terms for the two ends of 
the ellipse representing the topography. Accordingly, 
the upstream end of the ellipse will be referred to as 
the nose of the topography, and the downstream end 
as the tail. Also we will refer to the line of highest 
points along vertical cross sections parallel to the mi- 
nor axis as the crest of the topography. 
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Figure 2. Schematic defining the angle of topographic 
orientation with respect to the flow. The scaled topo- 
graphic height, defined in the text, is given by h(x,y) = 
h0exp(-x'2/a2 -y'2/b2), in coordinates x1 and y' that are 
aligned with the topographic principal axes in a horizontal 
cross section. The lengths of the major and minor axes 
of the contour of topography at level h(x,y) = e_I are 
a and b. The angle of attack, a, is defined as the (coun- 
terclockwise) angle from the major axis to the axis of the 
large scale-flow. A positive angle of attack, a = 45°, is 
illustrated here. 

Verron and Le Provost (1985) define a nondimen- 
sional parameter that measures the importance of to- 
pographic terms relative to the pure advective terms 
in equation (14). This parameter is given in our no- 

tation by 

hi 
L 

(13) 

where L is a typical horizontal length scale for both 
the topography and variations in the flow. Verron 
and Le Provost (1985) consider only the case of cir- 
cularly symmetric topography in which our param- 
eters a and b are both equal and take the value \L. 
For sufficiently small viscosity, Verron and Le Provost 
identified two distinct flow regimes separated by the 
critical value pd = 11. When fi < \n, i.e. when the 
topography is 'weak' or the flow is strong, the flow is 
close to the inviscid solution given by C = —h. For 
\i > \i&, trapping of the positive vortex can occur, at 
least temporarily, forming a dipole, which is unstable 
in the purely inviscid case.   Unless there is substan- 

tial viscosity, the positive vortex is eventually shed 

downstream. 

For our case, the definition of \L is somewhat am- 
biguous since there are now two length scales as- 
sociated with the topography. In what follows, we 
have chosen to nondimensionalize all length scales by 
L = 2a where a is the larger of a and b. Thus the 
length of the major axis is fixed at a = 0.5. We 
choose to fix the length of the minor axis at b = 0.1 
as a representative value giving a topography which 
is far from circular but yet not in the realm of long 
thin bodies. Furthermore, we nondimensionalize time 
with the advective time scale, U/L. In all of the sim- 
ulations with fixed, U, its value is taken to be 1, and 
so, the value of ho in these units is the same as fi. 

As for the boundary conditions on the streamfunc- 

tion \f, we consider the case in which the flow is uni- 
form at infinity. Thus we can put * = ip - Uy, where 
the boundary conditions are that ip vanishes at infin- 
ity. These boundary conditions present some difficul- 
ties in deciding on the appropriate numerical simu- 
lation scheme. From previous studies, we know that 
if we impulsively start a large-scale flow over a hill, 
the zero vorticity flow originally situated over the hill 
will be pushed off and become a cyclone, which may 
be completely or partially shed downstream. For our 
problem, we need to allow such shed vorticity to pass 
out of our limited computational domain. We have 
actually performed our simulations with three differ- 
ent codes with different boundary conditions to check 
that the effects discussed here are independent of the 
exact specifications of the boundaries. In one case, we 
have a finite difference code in a rectangular domain. 
Slip boundary conditions are used on the two walls 
aligned along the flow direction. The velocity on the 
inflow side of the channel is specified to be exactly 
U in the x-direction and zero in the y-direction. The 
outflow boundary has a radiation condition based on 
the Orlanski (1976) scheme. In the second case, we 
replaced equation (7) with the following 

Öq 

dt 
+ J(xP-Uy,q) = -r( + vV2(,        (14) 

where we have explicitly introduced the decomposi- 
tion \P = ij> — Uy. We solve this advection equa- 
tion spectrally assuming if) is periodic in both x and 
y directions. We used the dealiased pseudospectral 
method as described in Patterson and Orszag (1972). 
The problem of the shed vorticity is dealt with by 
adding to this code a physical space filter on the vor- 
ticity. Specifically, the local vorticity, C, is set equal 
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to zero every time step at all points beyond a cer- 
tain radius, which is taken to be larger than L, the 
representative horizontal scale of the topography. In 
the third case, simulations were also performed with a 
doubly-periodic spectral code. Here the shed vorticity 
re-enters the domain, but when we are considering the 
long term limit, when all transients have died out, this 
does not adversely affect the results. All the results 
reported below were found for all three types of codes 
and thus appear, at least qualitatively, to be indepen- 
dent of the details of the boundary conditions. This 
was also checked by doubling the domain size and the 
filter radius while keeping the resolutions fixed. Thus 
the phenomena reported below appear local, limited 
to the region where the confined topography is cen- 

tered. Also, questions of sensitivity to computational 
resolution were tested by running all simulations both 
at resolutions 64 x 64 and 128 x 128, with additional 
key tests at resolution 256 x 256. 

Finally, we must specify the values of the viscous 
coefficients in the evolution equation (14). When 
considering stationary flow, the inviscid solution is 
somewhat uninteresting from the point of view of 
form drag because, in a manifestation of D'Alembert's 
paradox, there turns out to be no drag at all in that 
case, as has been pointed out in Bannon (1980) and 
elsewhere. In other words, if the perturbation flow is 
stationary and confined (so that there is no possibility 
of transferring energy into the flow or to infinity), then 
there can be no energy input for there is no energy 
sink (see Batchelor, 1967). Thus we have to decide 
on what non-zero values to give for the viscous coeffi- 
cients r and v. To limit our search of parameter space, 
we have decided to set v = 0.01 and r = 0.2, taking 
these values from the parameter range explored by 
Verron and Le Provost (1985). In test cases we have 
varied these values by over an order of magnitude in 
each direction in order to verify that the phenom- 
ena reported are not qualitatively sensitive to these 
values; however, the results presented here, from se- 
quences of simulations in which other parameters are 
varied, all have kept these viscous coefficients fixed at 
the values specified above. 

Structure of the vorticity field 

We consider flow over the elliptical hill with the 
large-scale flow started impulsively. That is, the flow 
is initially set at U = 1 everywhere. The large-scale 
component of the flow is maintained at that value 
thereafter. Initially there is no perturbation field, and 

since there is no vorticity associated with the large- 
scale flow, there is initially no vorticity anywhere in 
the flow. As zero vorticity fluid is advected onto the 
topography, it must develop negative relative vorticity 
to compensate for the positive topographic contribu- 
tion to the conserved potential vorticity, q = £ + h. 
Similarly, fluid advected off the hill must develop pos- 
itive vorticity. Thus the earliest stage of evolution 
involves the creation of negative vorticity on the up- 
stream side of the hill and positive vorticity on the 
downstream side. The later stages of evolution and, 
in particular, the final stationary flow depend on the 
strength of the topography. Here we shall take two 
extreme cases, ho = 1 and ho = 100, to illustrate the 
results for 'weak' and 'strong' topography, where the 

magnitudes are suggested by the circularly symmetric 
topography case in Verron and Le Provost (1985). 

Weak topography 

We illustrate the early evolution of the vorticity 
field over the peak of the topography in the case 
ho = 1 for positive and negative angles of attack 
in Figure 3. In panels (a) and (c), the very earli- 
est stage is shown. The time is t = 0.1 after the 
beginning of the evolution. Here we have zoomed in 
on the flow over the topography, showing only the 
central area of size 3 x 3 of the full 5x5 computa- 
tional domain. The fluid particles have so far been 
displaced approximately only a distance 0.1 in the 
downstream direction. This results in a dipolar vor- 
ticity distribution over the topography with roughly 
elliptical structure for both components. As the large- 
scale advection continues to have its effect, the core of 
the trailing positive relative vortex is advected down- 
stream to eventually leave the computational domain, 
and this leaves primarily a negative vortex over the 
topography. This is shown in panels (b) and (d) at 
time t = 1.4. By this time there has been advection 
through distances greater than the topographic axes 
lengths a and b. The peak amplitude of the fixed rel- 
ative vortex at that time is —0.84, which is also the 
final stationary flow value. Thus unlike the inviscid 
case, the fixed vortex does not match the amplitude 
of the hill, and so the potential vorticity over the hill 
will not vanish. In this case, the relative vorticity is 
also not perfectly elliptical. Instead, it is relatively 
larger in magnitude on the upstream side than on the 
downstream side. We can understand this as simply 
the result of the fact that once the vorticity is created 
on any fluid particle being advected over the topogra- 
phy, the viscosity continually decreases the magnitude 
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Figure 3. Vorticity contour plots showing the early evo- 
lution in the weak topography case, ho = 1. The large- 
scale flow comes from the left, and the top/bottom pan- 
els represent the vorticity for the case where the angle of 
attack is a = +/ - 30°. The left panels correspond to 
time t = 0.1, while the right are taken at t = 1.4. The 
thick/thin curves correspond to positive/negative vortic- 
ity levels. The contour interval is 0.05. The zero vorticity 
level is not drawn. Only the central region of size 3x3, 
of the computational domain of 5 x 5, is shown. 

of that vorticity as the particle moves downstream; 
hence, the vorticity will be stronger on the upstream 
side. This asymmetry to the negative relative vor- 
tex means that the potential vorticity field, q = ( + h 
(not shown), over the topography will be dipolar with 
negative potential vorticity on the upstream side and 
positive on the downstream side, and this is also the 
case in the final stationary flow. 

In the long term, the core of the positive relative 
vortex is shed downstream, eventually to be com- 
pletely dissipated by viscous effects. However, a rem- 
nant of this vortex is left with a peak situated down- 
stream of the topographic peak. The final stationary 
vorticity fields for cases representing four angles of at- 
tack are shown in Figure 4. The angles represented 

are a - _90°, -30°, 0° and +30°. These results are 
representative of the full set that we studied spanning 
the range a = ±90° in 5° increments. For all of these 
cases, the local or perturbation flow due to the pres- 
ence of the topography is weak in the sense that the 
lines of flow or the contours of total streamfunction 

(not shown) are all nearly parallel to the large-scale 

flow direction. 

For all angles of attack, there is a peak of positive 
relative vorticity downstream of the negative vortic- 
ity peak. It appears from these plots that the ampli- 
tude of both the positive and negative vorticity peaks 
depends strongly on the angle of attack. A quantita- 
tive measure of this dependence for the whole range 
of attack angles is shown in Figure 5a. We graph the 
extremal values of relative vorticity as a function of a. 
The dashed curve corresponds to the absolute value 
of the negative vorticity peak value, while the solid 
curve is the value of the positive vorticity peak value. 
The negative vorticity is strongest at a = 90° (coming 
up to 95% of the value of the topography maximum) 
and weakest for a = 0° and vice versa for the posi- 
tive vorticity. To help understand these results, con- 
sider the fluid element which comes from upstream, 
crosses the peak of the topography, and then moves 
downstream.   A fluid element approaching from up- 

Figure 4. Contour plots of the stationary relative vortic- 
ity field for the weak topography case, h0 = 1, for various 
angles of attack. These panels represent the stationary 
vorticity field for flow over the elliptical topography for 
the angles of attack a = -90°, -30°, 0° and +30°, or- 
dered from left to right, top to bottom. The thick curves 
correspond to positive vorticity levels spaced 0.05 units 
apart, while the thin curves correspond to negative vor- 
ticity levels spaced 0.1 units apart. The zero vorticity level 
is not drawn. Only the central region of size 3 x 3, of the 
full computational domain of 5 x 5, is shown. 
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stream has zero relative vorticity, and, for each 'step' 
that it takes going uphill, it acquires exactly enough 
negative vorticity to balance the positive topographic 
contribution in the conservation of the potential vor- 
ticity. Thus for inviscid flow the stationary potential 
vorticity is exactly zero everywhere with relative vor- 
ticity being exactly anticorrelated with the topogra- 
phy, £ = — h. With viscosity, however, the relative 
vorticity generated on the fluid element by the to- 
pographic effect also dissipates continuously. Thus, 
when this fluid element reaches its highest point on 
the topography, its relative vorticity will be weaker 
in strength than it would have been inviscidly. Then, 
as it descends the hill, the positive vorticity gener- 
ated by the conservation of potential vorticity more 
than cancels the relative vorticity remaining from its 
climb with the destructive effects of viscosity acting. 
Thus, net positive relative vorticity will result on the 
descent. Of course, the positive relative vorticity on 
the fluid element will continue to diminish as it moves 
downstream. Furthermore, we see that the strength 
of the positive vortex depends strongly on the angle of 
attack. Of all the cases shown in Figure 4, the ascent 
to the top of the hill by the fluid element is shortest 
for a — 90°. In that case, there is little time for vis- 
cosity to act during the ascent and descent. Hence, 
the discrepancy between the total vorticity produc- 
tion during those two phases is relatively small. In 
contrast, in the case with a = 0°, the excursion to 
the top is the longest, and hence the effect of viscous 
decay on the vorticity is the greatest. Thus the posi- 
tive relative vortex generated on the descent will the 
the strongest of any angle of attack. 

As we shall see in section 4, it is also of interest 
to consider the position of the positive relative vor- 
tex in relation to the topography. Clearly from Fig- 
ure 4, the peak of positive vorticity will lie nearly on 
the z-axis. A secondary advective effect, due to the 
non-zero strength of the negative vortex, displaces the 
peak of positive vorticity to a position below the x- 
axis. The negative vortex over the hill induces posi- 
tive velocity in the y direction (i.e., v = dip/dx > 0) 
on the upstream side of the topography and nega- 
tive v on the downstream side. This secondary flow 
tends to displace the positive vorticity in an arc in 
the clockwise direction about the center of the topog- 
raphy. In Figure 5b we plot the angle for the position 
of the peak of the positive vorticity measured from 
the direction of the nose of the topography. Also on 
the same graph is a dashed curve showing the line of 
no displacement. The fact that the observed displace- 
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Figure 5. Position and amplitude of relative vorticity ex- 
trema in the weak topography case, ho = 1. (a) The solid 
curve shows the angular position of the peak of positive 
relative vorticity. This angle is measured from the direc- 
tion of attack, that is, from the direction along the long 
topographic axis facing in the upstream direction. The 
dashed curve shows the angular position, measured in the 
same way, of a point on the x-axis (i.e. the curve of no dis- 
placement), (b) The solid/dashed curve shows the mag- 
nitude of the vorticity at the extremal positive/negative 
value. 

ment angles lie on a line that is predominantly above 
the dashed line is due to the clockwise displacement 
of the positive vortex. 
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Figure 6. Contour plots showing the early evolution for 
the relative vorticity field in the strong topography case, 
ho = 100. The large-scale flow comes from the left, and 
the top/bottom panels represent the vorticity for the case 
where the angle of attack is a = +/ — 30°. The left 
panels correspond to time t = 0.1, while the right are 
taken at t = 1.4. The thick/thin curves correspond to 
positive/negative vorticity levels. The contour interval is 
4 in panels (a) and (c) and 2 in panels (b) and (d). The 
zero vorticity level is not drawn. Only the central region 
of size 3 x 3, of the full computational domain of 5 x 5, is 
shown. 

Strong topography 

The structure of the vorticity field in the strong to- 
pography case contrasts greatly with that in the weak 
case. At the earliest times, when the large-scale flow 
is first applied, the structure of the generated vortic- 
ity field must be the same as in the weak topography 
case since the same arguments for its generation ap- 
ply again. However, that early phase is very short 
lived because, for sufficiently strong topography, the 
vorticity generated over the topography can induce 
flows comparable in speed to the large-scale flow. In 
Figure 6, we show the early evolution for the exam- 
ple corresponding to ho = 100, at the same times as 
shown in figure (3) for the weak topography case. Al- 
ready at time t = 0.1, when the fluid has only been 
advected a short distance, the induced vortices are 
strong enough to make their mutual interaction as im- 
portant as the advection by the large-scale flow. By 
this time, the early simple structure like that shown 

in Figure (4), has already been disrupted by the dy- 
namics of the induced vortices. Intuitive arguments 
are much more difficult in the strong topography case, 
and less trustworthy, so perhaps it is best just to at- 
tempt a description at this point. In the a = +30° 
case shown in Figure 6, panels (a) and (b), we see that 
local vortex dynamics has already strongly distorted 
the symmetric dipolar field. The positive and nega- 
tive vortices have both developed two centers. Later 
these interact in a complicated way and the positive 
vorticity temporarily breaks into several pieces. The 
strongest positive vorticity center is eventually shed 
downstream and is just barely visible at the edge of 
the region shown in panel (b), and the rest of the 

positive vorticity joins together to form an elongated 

patch. Also in panel (b) we note that the negative vor- 
ticity has become concentrated at the 'forward end' 
or 'nose' of the topography, while the residual part of 
the negative vortex has become elongated along the 
upstream side of the topography. In the a = —30° 
case shown in Figure 6 panels (c) and (d), the t = 0.1 
vorticity structure has not departed as severely from 

Figure 7. Contour plots of the relative vorticity field for 
the strong topography case, ho = 100. These panels repre- 
sent the stationary vorticity field for flow over the elliptical 
topography for the angles of attack a = —90°, —30°, 0° 
and +30°, ordered from left to right, top to bottom. The 
thick/thin curves correspond to positive/negative vortic- 
ity levels spaced 2.0 units apart. The zero vorticity level 
is not drawn. Only the central region of size 3 x 3, of the 
full computational domain of 5 x 5, is shown. 
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the weak topography case. However, note the ten- 
dency for the negative vortex to peak over the 'tail' or 
downstream end of the topography, while the positive 
vortex concentrates at the 'nose.' Later, the positive 
vortex forms a secondary peak of weaker amplitude as 
seen in panel (d), but this is then shed downstream. 

The final stationary configurations for these two 
attack angles are shown in Figure 7, along with the 
a — 0° and a = 90° cases. The negative vortex is no 
longer elliptical. For all the attack angles, the neg- 
ative vortex is more concentrated at one end of the 
topography, and the positive vortex is now no longer 
simply trailing on the x-axis. Even though the neg- 
ative vortex is now, at its most intense point, only 
30% of the peak amplitude of the topography, the to- 
pography is so strong that the nonlinear term J(</>, () 
competes with the large-scale advection. The nega- 
tive vortex here is intense enough to strongly displace 
the trailing positive vortex from the positive x-axis. 
For —90° < a < —15°, the negative vortex is concen- 
trated at the tail of the topography, while the pos- 
itive vortex is concentrated at the nose, although it 
also has a broad tail elongated in the downstream 
direction. As a increases, a secondary negative vor- 
ticity peak develops. This is just beginning in panel 
(b) at a = -30°. From -30° < a < 0°, the negative 
vorticity has two peaks, the one near the tail, induced 
primarily by the large-scale advection of fluid, and the 
second induced by the influence of the positive vortex 
advecting fluid off the peak and upstream along the 
crest of the hill. At a = -15°, the negative vortic- 
ity peak near the nose dominates, comprising, with 
the primary positive vortex, a dipole at the nose. At 
a = 0° (panel c), we see a secondary positive vortex 
has also developed, and by a = +30° that trailing 
positive vortex peak has higher amplitude than the 
one at the nose. For moderate positive angles a, the 
two distributions are broad forming a dipole with pos- 
itive vorticity on the leading edge of the topography 
and negative vorticity concentrated on the nose and 
along the crest. The transitions from the dominance 
of the original vortices present at a = —90° to the sec- 
ondary vortices that develop are shown by the graph 
in Figure 8b. The angle is measured from the direc- 
tion of the nose, so the transition from 180° to 0°, on 
the dashed curve, corresponds to the transition from 
the trailing negative vortex at the tail to the leading 
vortex induced by the positive vortex. The transition 
from 0° to —180°, on the solid curve, corresponds to 
the transition from the leading positive vortex at the 
nose to the trailing positive vortex. 
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Figure 8. Position and amplitude of relative vorticity 
extrema in the strong topography case, ho = 100. (a) 
The solid/dashed curve shows the angular position of the 
peak of positive/negative relative vorticity. This angle 
is measured from the direction of attack, that is, from 
the direction along the long topographic axis facing in the 
upstream direction, (b) The solid/dashed curve shows the 
amplitude of vorticity at the extremal positive/negative 
value. 

In Figure 8a, we show the magnitude of the vortic- 
ity extrema for the full range of attack angles. The 
dependence on attack angle is somewhat more com- 
plicated than in the weak topography case (note es- 
pecially the minimum in the amplitude of the peak 
positive vorticity at a = 30°). Nevertheless, like the 
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Figure 9. Contour plot of the stationary total stream- 
function for the strong topography case, ho = 100. In 
panel (a), a — —30°, and in panel (b) a = +30°. The 
contour interval is 0.1. Only the central region of size 
3 x 3, of the full computational domain of 5 x 5, is shown. 

weak topography case, the negative vortex is weak- 
est/strongest for small/large angle of attack, and the 
positive vortex is strongest for small angle of attack. 
Note that the maximum negative vorticity extremum 
is only 30% of the peak topographic amplitude as op- 
posed to the 95% that is reached in the weak topogra- 
phy case. Also, looking at the vorticity contour plots, 
we see that the strong topography case is far from the 
inviscid solution, ( = —h. 

In Figure 9, we show the total streamfunction for 
the flow. Here we see that the induced negative vortex 
is strong enough to reverse the flow locally and pro- 
duce closed contours. We should mention that such 
closed contours, or recirculating regions, would not be 
possible for the stationary flow if the only dissipation 
acting was Ekman bottom drag. This follows from the 
fact that on any closed contour the fluid element cir- 
culating over and over again on the same path would 
have no way to replenish its decaying vorticity; how- 
ever, the presence of Laplacian friction allows these 
closed contours because there is then diffusion of vor- 
ticity across them. As for the border between values 
of topography for which these closed contours do or 
do not form, this will depend on the attack angle as 
well as the strength of the topography. 

Remarks on the position of the cyclone in the station- 

ary flow 

The discussion above strongly suggests that in the 
stationary flow there is always a cyclone to be found 
near the hill, even if this is just a remnant of the orig- 
inal transient cyclone. This is fairly straightforward 
to prove in the case in which the bottom drag param- 
eter, r, is non-vanishing. The equation for the steady 

state is, from (14), 

J{ip-Uy,Q + h) = -K + vV\- (15) 

If we assume that the that ( and h vanish sufficiently 
rapidly as the distance from the center of the hill in- 
creases, then on integrating over the whole plane, we 
obtain 

r /  f (dxdy = 0. (16) 

Thus the circulation must vanish. Since ( vanishes 
at infinity, this means that there must be both pos- 

itive and negative extrema somewhere on the plane. 
Unfortunately, this proof tells us nothing about the 
case in which r = 0. Our experience with a few test 
cases shows that even in that situation there is still a 
remnant cyclone in the stationary flow as long as v is 
non vanishing. 

At an extremum of C, its gradient vanishes. Hence, 
from (15), we have 

J(iP-Uy,h)± = -rC±+(vV2C)±.        (17) 

where all the terms are evaluated at the position, r+ 
of the maximum or at r_, the position of the mini- 
mum. At the maximum, we have ( = £+ > 0 and 
(V2C)+ < 0, and thus J(V> - Uy, h)+ < 0. This im- 
plies that the position of the peak must lie on the 
topography. Similarly, one can show that the mini- 
mum C must also lie over the topography. Now with 
the Gaussian hill, the topography technically covers 
the plane, but for compact topography, the extrema 
of vorticity would clearly be restricted to lie in the 
compact region defined by the hill. In the case of 
strong flow, in which U dominates ip, we further have 
that 

Bh 
U 

dx 
<0 (18) 

implying that the cyclone must in that case (weak 
topography) be on the downstream side of the hill. 

Form drag in the stationary flow 

Topographic form drag is the net force exerted on 
the flow by the topography along the direction of the 
large-scale flow. Consequently, the drag is the nega- 
tive of the net force acting on the topography in flow 
direction. To calculate the total force, T, acting on 
the topography, we integrate the pressure force over 
the entire surface of the topography: T — — f J pnda, 
where n is the outward unit normal vector from the 
surface of the topography, and da is the element of 
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area on the surface. Since the surface of the topogra- 
phy is defined by z = -Ho + AH(x, y), we have the 
standard results: 

(-dAH/dx,-dAH/dy,l) 

yi + (dAH/dxy + (dAH/dyf 
(19) 

and 

T ■ 

da = y/1 + (dAH/dx)2 + {dAH/dyfdxdy.    (20) 

Thus, the total force, T, in the ^-direction is 

= JJpd-^fdxdy=fPJJiS^fdxdv' 
(21) 

where we have introduced the definition of the stream- 
function in terms of the pressure in the last line. Con- 
sider, for example, the case of flow in the positive 
x direction impinging on a hill. If the pressure is 
higher on the upstream side of the topography, where 
dAH/dx is positive, than on the downstream side, 
where dAH/dx is negative, then there is a net force 
on the topography in the direction of the flow, as we 
would expect. If we integrate by parts, we can ex- 
press these results in terms of the pressure gradient 
or, equivalently, the velocity field. Using the defi- 
nition of the scaled topography, and integrating by 
parts, we obtain 

T-TL -,//„// h-^—dxdy. 
ox 

(22) 

Thus we see that an enhanced pressure gradient on 
one side of the topography relative to the other, yields 
a net force on the topography. 

The drag on the flow is the negative of the force on 
the topography. The product pHo is just the mean 
mass per unit area, and it is convenient to factor this 
out of the definition for drag. Thus we shall define 
this normalized drag as 

D •IS h-—-dxdy 
ox 

(23) 

(cf. Bannon 1985, Carnevale and Frederiksen 1987). 

Considering the drag in the case of stationary flow, 
we first check that the drag in the inviscid case is zero 
as discussed above. The solution to the inviscid prob- 
lem is given by q = 0, that is, V2^ = —h. Substitute 
—V2V> for h directly in the expression for D and inte- 
grate by parts. All that remains after the integration 
is a boundary term at infinity that vanishes. Next, 
we turn to numerical results for the stationary states 

with viscosity. As in the case where we considered the 
structure of the vorticity field, we will see that the be- 
havior of the drag is rather different in the weak and 
strong topography limits. 

Weak iopography 

To obtain the stationary flows for given topography 
and large-scale flow velocity, we simulated the evolu- 
tion, from an initial condition of uniform flow, long 
enough in time for all transients to die down. In Fig- 
ure 10, we show the results from a series of such simu- 
lations performed with the periodic boundary condi- 
tion code with spatial filter. In this series, the angle 
of attack of the topography was varied from —90° to 
+90° in 5° increments. As in the previous section, 
the weak topography case is represented by using the 
topographic amplitude ho = 1. Since the form drag 
is always negative, opposing the large-scale flow, we 
consider only its magnitude. In Figure 10a, we plot 
the form drag in the stationary state as a function 
of the attack angle. The form drag is greatest when 
the long axis of the topography is perpendicular (i.e., 
a = ±90°) rather than parallel (a = 0°) to the flow. 
As we might have expected from the discussion in the 
previous section on the vorticity structure, the curve 
is not symmetric about a = 0°. It appears that the 
form drag is stronger for a positive angle of attack 
than for a negative angle of the same magnitude. In 
Figure 10b, we plot the relative variation of that dif- 
ference, that is, we plot {\D(a)\ - \D(-a)\)/\D(a)\, 
where D(a) is the form drag for a given angle of at- 
tack. The Figure shows that the difference is greatest 
when the size of the attack angle is about 20°, with 
a 2% variation at that angle. For somewhat higher 
topographies (ho ~ 20), the relative variation reaches 
about 20%, as we shall see below. 

For the weak topography case, form drag depen- 
dence on attack angle can be predicted from pertur- 
bation theory. To examine the effects of weak topog- 
raphy, we begin by rewriting the stationary form of 
equation (14) as 

"!+< "V2C = -U^-J{rl>X + h).     (24) 

We assume the primary balance for weak topography 
is between the terms on the left, which are linear in 
the vorticity, and the first forcing term on the right, 
— Udh/dx. This permits us to treat the quadratically 
nonlinear Jacobian term as a small perturbation. It 
also means that at lowest order the streamfunction is 
linear in the topography, and all succeeding terms are 
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Figure 10. Form drag for the weak topography case, 
ho = 1. This data is taken from simulations using the 
spatially cutoff code, (a) The absolute value of the sta- 
tionary form drag is plotted as a function of attack angle. 
(b) The percent of relative variation of the difference be- 
tween the drag at positive and negative angles of attack is 
plotted versus attack angle. Specifically, the graph repre- 
sents 100(D(a) - D(—a))/D(a), where D{a) is the form 
drag for a given angle of attack, a. 

of higher integral order. Thus we write 

V> = ■0(1) + ip{2) + il>{z) + ■ ■ ■ , 

c = c(1) + c(2)+c(3) + ---, 
where C(n) = V2^(n) = 0{h%). 

(25) 

(26) 

To evaluate the terms in the perturbation series, we 
first take the continuous Fourier transform in both x 
and y to obtain 

9^Ck = -ikxUhk - Jk(^,C + h).        (27) 

Here the linear Green function gk is given by 

1 
ffk     ikTU + dk' 

(28) 

where dk = r+vk2, and Jk(A, B) is the Fourier trans- 
form of the Jacobian of fields A and B. An explicit 
formula for Jk(A, B) in terms of the Fourier trans- 
forms of A and B is given in the appendix. 

The first and second order solutions can then be 
written as 

-ikxUgyh^ (29) ">k 
and 

A*)- -<7kJk(^(1),C(1) + /0- (30) 

The form drag can now be calculated order by order. 
Directly from the formula (23) for the form drag and 
the fact that the streamfunction at lowest order is 
linear in the topography, we see that the form drag 
is quadratic in the topography at lowest order. Thus 
the perturbation series for the form drag will be 

D = D^ + I>(3) + £>(4) + . . (31) 

Using the Fourier transform within the formula for 
the form drag, we have 

d2k_ 

y 
'(32) 

Then by direct substitution of (29) into (32), we ob- 
tain 

^^-uJj^Hf^ (33) 

-u J! k
2

x{-ikxU + dk)\hk\2  d2k 

k\V2k2 + d2)      (2TT)
2 (34) 

Notice that the last expression is decomposed into a 
real and imaginary part. But the form drag is a real 
quantity. The vanishing of the imaginary part of the 
integral can be checked by considering the change of 
sign k —* —k for the dummy integration variables. 
Since the topography is real we have the Hermiticity 
constraint, hi = h_k, and so |/i]J2 is unaltered by 
this sign change. Thus we see that the imaginary part 
of the integrand changes sign under this sign reversal 
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and so must vanish on integration over the range from 
—oo to +00 for kx and ky. Finally we have 

DW ~"IJ kldk\h-^\2      d2k 

k2{U2kl + d\) (2TT)
2
' 

(35) 
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Figure 11. Form drag from weak topography perturba- 
tion theory for ho — 1. (a) The solid curve is the form drag 
from the fully nonlinear simulation. The dashed curve 
is the prediction of the lowest order perturbation theory, 
D^2' (here in units of 10~3). (b) The open circles mark the 
results for the relative variation of the difference between 
the drag at positive and negative angles of attack for the 
fully nonlinear simulations. The solid curve shows the 
prediction of the perturbation theory truncated at next 
to lowest order, that is with D x D(2) + I»(3). 

It is difficult to apply this perturbation theory, 
meant for the infinite domain, directly to the simula- 
tions with the channel and radiation boundary condi- 
tions or the spatially filtered simulation. However, for 
simulations with periodic boundary conditions, the 
result is simply a discretization of the continuous for- 
mulas. We used a quasi-geostrophic doubly periodic 
code to calculate the stationary solutions for the same 
set of experiments used to make Figure 10. In Fig- 
ure 11a, we compare the actual result for the depen- 
dence on a for the full nonlinear doubly periodic cal- 
culation with the lowest order result. Although the 
quantitative values are somewhat different than for 
the case with the spatial filter, qualitatively they are 
alike. In Figure 11a, we see that the lowest order per- 
turbation theory does account for most of the form 
drag. The small difference is essentially due to the 
next order term in the theory, but before proceeding 
to show that, let us first note that the lowest order 
form drag, D^ is symmetric in the attack angle. In 
fact, this will be the case for any topography with a 
reflection symmetry. Let us include the dependence 
on the attack angle explicitly. We can define the at- 
tack angle either with reference to the angle between 
the line of symmetry or perpendicular to it. Then 
we can write h(x,y;a) = <j>(x',y'), where x' and y' 
are just the rotated coordinates defined previously in 
equations (11) and (12). A reflection symmetry cor- 
responds to the fact that either <f>(x, y) = 4>{—x, y) or 
4>(x, y) — 4>(x, —y). We shall write the Fourier trans- 

form of h(x,y;a) as h-^(a). By using the fact that 
rotations do not change area, this Fourier transform 
is found to be 

hk(a)- <t>{K>k'y)< (36) 

where <j)(kx,ky) is the Fourier transform of <p(x,y), 
and 

k'x = kx cos a + ky sin a, (37) 

k' = — kx sin a + ky cos a. (38) 

By direct substitution in equation (35), we have 

n(2),  ,__jj[ [ k2
xdk\i(K,k<y)\2  d2k 

K   ' ~        J J    k2{U2kl + d\) (2rr)2 

-U 
[  f kjd, 

J J k\U2kl ■ d\) 

■ cos a + ky sin a, —kx sin a + ky cos a)\ 

(39) 

(40) 

, d2k 

(41) 
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Thus, 

D<-2\-a) = -U   f   f 
k2

xdh 

k2(u2k2 + d2) 
(42) 

\<f>(kx cos a — ky sin a, kx sin a + ky cos a)\' 
d2k 

(2TT)2- 

(43) 

If <j>(x,y) = <j)(—x,y), which implies <j)(-kx,ky) = 

<j>{kx,ky), then the substitution fc^ —► — kx shows that 

D^{-a) = DW(a). If <j>{x, y) = <p{x, -y), then the 
same point is demonstrated by the change of variables 

Jfe - Ky y    —r n,y. 

These results show that the asymmetry in the form 
drag, as seen in Figure 10, must come from higher or- 
der terms in the perturbation theory. We shall next 
demonstrate that for ho — 1 the second term in the 
perturbation series captures the observed deviation 
from symmetry very well. That term, D^3\ is de- 
rived in general form in the appendix. If the topog- 
raphy has the point reflection symmetry h(x,y) — 
h(—x,—y), as is the case for the elliptical topogra- 
phy, then the expression for D^ simplifies and we 
have 

D& = -U3 J 2dpdqq
2k2

xpxqxbkbpbqVkpq,     (44) 

where 

and 

h   = fck 
k ~ k2(U2k2 - dir 

(45) 

2>kpq = * • P x q(27r)2<5(k + p + q) 
d2k    d2p    d2g 

'(27r)2(27r)2(27r)2' 
(46) 

as shown in the appendix. 

If, in addition to the symmetry of reflection in a 
point, the topography is also symmetric to reflection 
through a line, then we can show that D^3\a) — 
—£>(3)(—a). For example, if the topography is sym- 

metric about the j/'-axis, then hkx,ky(o:) = <j>(k'x, k'y) — 

4>(-k'x,k'y) = h-kx.kyi-a)- Thus, a change of vari- 
ables in which all kx,px,qx change sign in the ex- 
pression for D(3)(—a) shows that the integrand is 
simply the negative of that in the expression for 
D^3\a) (note that i-pxq changes sign). Similarly 
if hjcx k (<*) = hkx-k {—oe), then a change of variables 
in which all ky,py,qy change sign, in the expression 
for £)(3)(—a), shows again that the integrand is sim- 
ply the negative ofthat in the expression for £K3)(a). 
By rotation, this result can be further extended to 

Figure 12. Antisymmetric contribution to the form drag 
from the next to lowest order in perturbation theory, 
D^3-*(a). The calculation is made for the doubly peri- 
odic boundary condition case. This contribution accounts 
almost entirely for the difference between the dashed and 
solid curve in Figure 11a. D^(a) is measured here in 
units of 10-6. 

the case for topography with reflection symmetry in 
any horizontal line. For the periodic boundary condi- 
tion case, it is again an easy matter to calculate the 
theoretical drag by discretizing the Fourier represen- 
tation. In Figure lib, we show the relative difference 
between the form drag for positive and negative an- 
gles of attack (open circles) calculated from the fully 
nonlinear simulations with periodic boundary condi- 
tion. These values are compared to the predictions 
(solid curve) from the perturbation theory truncated 
at the D^3\a) contribution. For this weak topogra- 
phy case, the match is almost perfect. The form drag 
contribution coming solely from D^3\a) is shown in 
Figure 12, and is antisymmetric as anticipated. 

Strong topography 

As we increase the amplitude, ho, of the topogra- 
phy, the perturbation theory can be expected to fail. 
In two series of experiments, in which the angle of at- 
tack was fixed at ±30° respectively, the topography 
amplitude was varied from 1 to 150. The absolute val- 
ues of the stationary form drag for these experiments 
are plotted in Figure 13a. The solid/dashed curve 
corresponds to    the experiments with attack angle 
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ID 

Figure 13. Form drag as a function of topographic 
height, (a) Two series of experiments are represented, 
with the angle of attack, a, fixed in each series at +30° 
and —30° respectively. The solid/dashed curve shows the 
absolute value of the stationary form drag from the exper- 
iments with a = +/ — 30°. Note that at h x— 15 there 
is a cross-over between the regime in which the positive 
angle of attack gives a stronger form drag to the regime 
with just the reverse relationship, b) The relative differ- 
ence in form drag strength between the plus and minus 
30° cases is plotted as a function of topographic strength 
(the dashed line is simply the zero level). 

+/ — 30°. Firstly, we note that for the range of topog- 
raphy roughly from ho = 1 to h0 = 15, the form drag 
for both curves is approximately a quadratic function 

of ho. This is what one would expect in a weak to- 
pography regime where D^2\ the lowest order approx- 
imation to the form drag, would dominate. Also note 
that, in this region, the strength of the form drag for 
the positive angle is stronger than that for the nega- 
tive angle. Near ho = 15 there is a transition to a new 
regime where the scaling with topography no longer 
follows the quadratic law. In the strong topography 
regime, the drag seems to increase with topography 
amplitude roughly as h^3. Also in the strong topog- 
raphy regime, the relation between the form drag for 
positive and negative angles has reversed, with nega- 
tive angles of attack corresponding to stronger form 
drag than positive angles. This last point is empha- 
sized in Figure 13b, where the relative difference in 
form drag strength between the plus and minus 30° 
cases is plotted as a function of topographic strength. 

As an example of the functional dependence of the 
form drag on angle for a case of strong topography, 
we plot this relation for the case of ho = 100 in Fig- 
ure 14a (solid curve). There have been several papers 
which discuss in part the theory of strong topographic 
forcing (cf., Pierrehumbert and Malguzzi, 1984); nev- 
ertheless, we have not been able to predict the shape 
of this form drag curve. We note that this curve is 
somewhat broader about a = 0° than the correspond- 
ing curve for ho — 1 in Figure 10a. As an aid to judg- 
ing the symmetry and smoothness of the curve, we 
have also plotted the symmetric dashed curve corre- 
sponding to ylsin2 a + B cos2 a, where A and B were 
chosen so that the two curves would have the same 
extremal values. In Figure 14b, we plot the relative 
difference in strengths between positive and negative 
angles of attack. The shape of the curve is similar to 
that shown in Figure 10b except, of course, for the 
sign since in this regime the negative angles corre- 
spond to stronger form drag. Here we see that the 
maximum difference is about —18% at around attack 
angle |a| = 20°. This is a great deal stronger that 
the ho — 1 case, but similar to the results for ho = 15 
(see Figure 13b), which is still in the regime where 
the positive attack angle leads to the stronger form 
drag. 

The crossover from the weak to the strong topog- 
raphy regime seems, from Figures 13a and 13b, to 
occur roughly near ho = 15. As we noted above, in 
section 3, when ho — 1 the total streamfunction is 
only slightly perturbed from that for uniform flow, 
but for topographies as strong as ho = 100, a Taylor 
column, i.e. a region of recirculating, closed stream- 
lines is evident (cf.   Figure 9).  It is tempting to try 
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to attribute the transition of the form drag behavior 
in the weak and strong limits with the occurrence of 
the Taylor column. However, the formation of Taylor 
columns occurs in these simulations for topographic 
amplitudes above roughly h0 = 50, depending some- 
what on the angle of attack, and not at ho = 15. 

Of course, in the regime from ho = 15 to ho = 50, 
the streamlines are strongly distorted from the un- 
perturbed case of uniform flow even though closed 
contours do not form. The behavior of the form drag 
as a function topographic height, as well as its depen- 
dence on attack angle, are better understood in terms 
of the structure of the stationary vorticity field, as we 

will now consider further. 

Effects of the structure of the vorticity field 

In order to try to build some intuitive understand- 
ing of these results on the form drag, we shall examine 
the vorticity field associated with the stationary flow 
for the weak and strong topography cases. Consider 
the a = —90° case in Figure 4a along with the formula 
(23) for the form drag. The negative vortex over the 
hill induces a positive pressure gradient, v — dip/dx, 
on the upstream side of the topography, and a nega- 
tive v on the downstream side. If these pressure gradi- 
ents on each side were equal in strength, then the form 
drag would vanish as in the inviscid case. The pres- 
ence of the positive vortex, on the downstream side of 
the hill, will increase the magnitude of i; on that side 
relative to the upstream side. Thus, on multiplying v 
by h and integrating, the net effect is a negative form 
drag. The same analysis applies in the a = 0° case 
(panel 3c). In both the a = —90° case and the a = 0° 
case, there is an enhanced gradient of pressure on the 
downstream side that accounts for the negative net 
form drag. In the a = —90° case, this enhanced pres- 
sure gradient lies along the whole downstream side of 
the topography, while in the a = 0° case, the region 
of enhanced pressure gradient is aligned perpendicu- 
lar to the long topographic axis. The result is that 
so only a smaller portion of the region of enhanced 
pressure gradient effectively contributes to the form 
drag in the a = 0° than in the a — —90° case. 

Now we turn to the question of why, in the weak 
topography case, the drag is stronger for the positive 
angle of attack than for the negative angle of the same 
magnitude. In the perturbation theory, we noted that 
the lowest order form drag does not have this asym- 
metry, and it is necessary to go to the next order to 
capture this effect. This higher order effect results 
from the nonlinear advection produced by the Jaco- 
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Figure 14. Form drag for the strong topography case, 
h0 = 100. This data is taken from simulations using 
the code with spatial cutoff, (a) The absolute value of 
the stationary form drag is plotted as a function of at- 
tack angle. This is compared to the fit to the symmet- 
ric curve j4sin2(of) + B cos2(a) with A and B chosen 
to give a good fit at the extremal values of the data, 
(b) The relative variation of the difference between the 
drag at positive and negative angles of attack is plot- 
ted versus attack angle. Specifically the graph represents 
100(D(a) - D(-a))/D(a), where D{a) is the form drag 
for a given angle of attack, a. 

bian, J(ip, h + Q. In the appendix, we show that the 
interaction, J(Y>,/i), does not contribute at the or- 
der of Z)(3) for elliptical topography. Thus it is only 
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through the vortex-vortex interaction, J(ip,Q, that 
D(3) contributes to the drag. Physically this term is 
related to the tendency of negative vorticity over the 
topography to displace the positive vortex in an arc 
in the clockwise direction about the center of the to- 
pography. In the a = —30° case, in panel 3b, the 
negative vortex is displaced away from the crest of 
the topography and away from the region of negative 
vorticity. This results in a weaker induced pressure 
gradient compared to what it would have been with- 
out this angular displacement. In the a = +30° case, 
in panel 3d, the negative vortex is displaced toward 
the crest of the topography and toward the region of 
negative vorticity. This results in a stronger induced 
pressure gradient compared to the lowest order case. 
Thus the form drag is stronger for the positive a case 
than for the negative a case. If we imagine steadily 
increasing a from a = —90, we see the positive vortex 
first on the left side (looking upstream) of the crest 
of the topography, then at a = 0 lying right over the 
crest, and then on the right side for a > 0. Thus for 
a < 0, the nonlinear advection displaces the negative 
vortex away from the topography, while for a > 0 
the displacement is toward the topography. This ac- 
counts for the result that the form drag is stronger 
for positive angles of attack than negative angles of 
the same size. 

Given the above analysis for the weak topography 
case, how can we understand the transition to what 
we have called the strong topography regime in which 
the form drag is stronger for the negative angle of at- 
tack than for the positive angle? As noted above, this 
effect is not directly related to the formation of Tay- 
lor columns. Instead, the answer will be found in the 
relative positions of the vortices with respect to each 
other and to the topography. Figure 15 displays data 
gathered from a series of experiments representing to- 
pographies with amplitudes from ho = 1 to ho = 50, 
and to angles of attack a = ±30°. The positions of 
the peak of positive relative vorticity (triangles) and 
negative relative vorticity (dots) are shown over el- 
lipses which represent the topography. First of all, 
note that for the ho = 1 case, the negative vortex 
peak is located almost directly over the center of the 
topography, and as ho increases, it is displaced along 
the crest, toward the nose of the topography in the 
a — +30° case, but toward the tail in the a = —30° 
case. For ho = 1, the positive peak vorticity is lo- 
cated slightly below the K-axis, directly downstream 
of the center of the topography. As ho increases, the 
displacement of the positive vorticity peak is rather 

-1.0 

Figure 15. Positions of vorticity extrema for different 
values of the topographic height, hQ. The flow is in the 
positive ^-direction, and the orientation of the topogra- 
phy is indicated by the ellipses, with a = +30° in panel 
(a) and a = —30° in panel (b). The position of the pos- 
itive (negative) vorticity peaks are indicated by the solid 
triangles (circles). The topographic heights represented 
are h0 = 1, 10, 15, 20, 25, 30, 40, and 50. In each panel, 
for ho = 1, the negative vortex is located approximately 
over the center of the ellipse, and the positive peak is just 
slightly below the x-axis, directly downstream of the cen- 
ter of the ellipse. 

different for the two topographic orientations. For the 
a = —30° case, the peak of positive vorticity simply 
moves further and further toward the nose of the to- 
pography but always remaining on the downstream 
side. For the a — +30° case, the positive vorticity 
peak is displaced in an arc. Between ho = 10 and 
ho = 15, this peak crosses over the crest of the topog- 
raphy, moving from the downstream to the upstream 
side. From ho = 15 to ho = 40, the peak is displaced 
more and more toward the nose of the ellipse, remain- 
ing always on the upstream side. There then appears 
to be a discontinuous jump with a large displacement 
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putting the h0 = 50 position back downstream but 
still on the upstream side of the ellipse. Actually this 
discontinuity in the graph is related to the fact that, 
in the positive a cases, with very strong topogra- 

phy, there are two peaks of positive relative vorticity, 
as we can see in Figure 7d. Between ho = 40 and 
ho = 50 the trailing positive vorticity peak becomes 
stronger than the leading one, resulting in the jump 
in the graph in Figure 15a. The value of h0 for which 
this jump occurs is also approximately the value of 
topography for which Taylor column formation first 
occurs. However, as we noted before, the transition 
to what we have called the strong topography regime 
occurs at the much smaller value of ho fa 15. This 
shows that the relevant effect is that for /io ~ 15 the 
positive vortex peak crosses over from the trailing side 
of the topography to the leading side in the a = +30° 
case, while no such transition occurs in the a = —30° 
case. 

We have found that a simple point vortex model 
based on the idea that it is the position of the pos- 
itive vortex that determines whether we are in the 
strong or weak topographic regime can capture the 
transition between these regimes. Consider replacing 
the actual positive and negative vortices by two point 
vortices, one of each sign. Note that if the negative 
vortex was exactly at the center of the topography, 

Figure 16. Drag due to a positive point vortex. The 
solid (dashed) curve shows the value of the drag, D, for 
the angle of attack a = +30° (a = -30°). The drag is 
given as a function of the angular position, 6, measured 
from the positive x-axis, of the point vortex. The distance 
of the point vortex form the center of the topography has 
been fixed at ro = 0.4. The drag is normalized by hoT, 
where h0 is the topographic height and T is the strength 
of the point vortex. 

then, by symmetry, it can have no contribution to 
the form drag. For topographic strengths less than 
ho fa 15, the negative vortex is only displaced by a 
relatively small amount from the center of the topog- 
raphy; hence, as a first approximation, we neglect its 
contribution to the form drag and consider only the 
contribution coming from the positive vortex. Let us 
further assume that the only effect of increasing the 
strength of the topography is to change the angular 
position (6 measured from the z-axis) of the positive 
vortex. Accordingly, in the model, the positive vor- 
tex is taken to be a fixed distance r0 from the center 
of the topography. Thus, we evaluate the contribu- 
tion to the form drag from a point vortex placed in 
the position (r0 cos 0, r0 sin 6) as a function of 0. The 
streamfunction for a point vortex of strength T at this 
position is given by 

V"= ^-ln(lr-ro|)- 

The resulting form drag is 

D = — /  / i ^hdxdy. 
2T J J   |r — r0r 

(47) 

(48) 

Performing the integration numerically, and varying 
only the angle 6, we obtain the plots shown in Figure 
16. The solid graph is the drag, normalized by Tho, 
for the topographic orientation a = +30°, and the 
dashed graph is for a = -30°. Keeping in mind that 
for this model the magnitude of the angle 6 corre- 
sponds to the height of the topography, we note that 
for small 6 the drag is stronger (i.e. more negative) 
for positive a than for negative a, and vice versa for 
large \6\. Thus, this point-vortex model does capture 
the same behavior, at least qualitatively, that we ob- 
served in the simulations. Here we have used ro = 0.4 
in the calculations of the drag. The angle 0 at which 
the model passes from the weak to the strong regime 
is about 0 = —30°, which corresponds to placing the 
point vortex right over the crest of the topography. 
However, the cross-over point does depend somewhat 
on the value chosen for ro- Furthermore, note that 
as the angle 0 becomes very large, a point will be 
reached at which the point vortex contributes posi- 
tively to the form drag, as may be intuitively obvi- 
ous. But, of course, the total drag must be nega- 
tive, so it is clear that for very large displacements, 
0, the contribution of the negative vortex cannot be 
neglected. To properly capture all aspects of the de- 
pendence of form drag on topographic orientation and 
height would require a far more elaborate model than 
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our one point model. Nevertheless, this model does 
capture the essential feature of the form drag's asym- 
metric dependence on the sign of a in the weak and 
strong topography regimes. 

Conclusion 

We have explored how the drag that an elongated 
hill exerts on a flow, in a rotating fluid, depends on 
the orientation of that hill with respect to the flow 
direction. As might be expected intuitively, the drag 
is strongest when the hill's long axis is perpendicular 
to the flow direction, and it is least when that axis 
is parallel to the flow. A somewhat less intuitive re- 
sult was that the strength of the form drag, even for 
hills with a horizontal cross section which is symmet- 
ric about its long axis, depends not only on the size of 
the "angle of attack," but also on the sign ofthat an- 
gle. We related this asymmetric dependence on angle 
to an interaction between the basic asymmetry in the 
mechanism of vortex tube compression and the break- 
ing of the circular symmetry of the topography. The 
advection of zero relative vorticity fluid up onto the 
topography always results in an anticyclone over the 
topography and this tends to shift the downstream 
cyclone in an anticyclonic direction, which puts the 
cyclone either closer to or further from the topogra- 
phy depending on the topographic shape and orienta- 
tion. Whether a positive angle of orientation results 
in more or less drag than the corresponding negative 
angle depends on the height of the hill. We denned 
a weak and strong (i.e., low and high) topography 
regime. For weak topography, the drag is stronger 
for a positive angle of attack than for an angle of the 
same size but opposite sign. For strong topography, 
this relationship is reversed, with the negative angle of 
attack giving the stronger form drag. It is often con- 
venient to associate Taylor column formation with a 
strong topographic regime. However, in this study, we 
found that the formation of Taylor columns did not 
signal the transition from the qualitatively different 
behaviors of the form drag in the weak and strong 
regimes. Rather, we found that these regimes were 
defined by the qualitatively different distributions of 
vorticity over the topography. The weak topography 
regime corresponds to the case in which the positive 
vortex is located on the downstream side of the to- 
pography for both the positive and negative angle of 
attack, while, in the strong topography regime, the 
positive vortex is on the downstream side for the neg- 
ative angle of attack, and on the upstream side for the 
positive angle of attack.   We also provided a simple 

point-vortex model which captures these same effects. 

In these studies, we have explored a wide range of 
values of the topographic height. The values of the 
viscosity were also varied in test cases designed sim- 
ply to insure that the phenomena reported do exist 
over a range of over an order of magnitude in each di- 
rection for v and r. There are, of course, many other 
physical effects that we have not included in the sim- 
ple model used here, and some of these could modify 
our results. Perhaps the most interesting effects to 
consider would be those that would allow the propa- 
gation of waves. Recall that, as we noted above, in 
the absence of viscosity, in our simple model, the in- 
viscid stationary flow suffers no form drag due to the 
presence of the hill, a manifestation of D'Alembert's 
paradox. However, the possibility of radiating energy 
infinitely far away, allows for a finite drag even in the 
inviscid case (see Batchelor, 1967). Two very natural 
candidates for such radiation would be Rossby waves 
and internal gravity waves. Rossby waves will result 
either from a large-scale bottom slope or a variation 
of rotation rate with latitude. Internal gravity waves 
require density stratification. 
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Appendix: calculation of D^ 

The basis for small topography perturbation the- 
ory was developed in equations (24)-(35). Since the 

drag, 

D = Jh
dAdxdy = „J^h 

d2k 

-k(27r)2 

explicitly contains the topography to the first power, 

and since the vorticity, 

C = c(1) + C(2, + C(3) + ---, 

is at lowest order proportional to the topography, it 
follows that the lowest order contribution to the form 
drag, as given in (35), denoted by D^2\ is second 
order in the topography. The next order term D^ is 

given by 

D^ = J "P 
■(2)j 
'k ■cr*-k 

d2k 

and since 

d2) = -^k(^(1,.c(1) + /o, 

(Al) 

(30) 

this is the lowest order term to involve the nonlinear 
self-advection. The Fourier transform of the Jacobian 

can be represented as 

f     iVrrdAdB     dAdB..,      ,.„. 
Jk(A>fl) = ye-.kT(__-_^.)d-r    (A2) 

= _  Lit-kr+pr+qr)^ 
xly      PyQx) 

,,     cPp     d2q 
xApB(ld r(2?r)2(27r)2 

d2p    d2q 
= - J z • p X qAp5q(25r)2(5(-k+p+q)-(27r)2 ^ , 

where z • p x q = (pxqy -pyqx) and <$(■) is the multi- 
dimensional Dirac delta function. 

Now we can calculate the D^ term. Begin by 
changing the sign of the dummy integration variable, 
k, in (Al), and substituting for (i2^> from (30) to ob- 
tain 

(3) 
Here we consider the two components, D^'h and A/,,(, 
which correspond to vortex-topography and vortex- 
vortex interactions separately. After introducing the 
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expression for Jk and the definition (28) for the 
linear Green's function, we obtain, for the vortex- 
topography contribution, the result 

L>(3) - Ii - -u J jk^9-k9phkhPh<lVkpq 
(A3) 

= -U     kxpx[(kxpxU
2 + dkdp) + iU(kxdp - pxdk)] 

(A4) 

where 

x6k6p/iqX>kpq, 

^kpq = (2 • P X q) 

,     so   „ s  d2k    d2p    d2q ,ArS x(2^(k + P + q)^^^, (46) 

and 
ft    = fek 
k_ p(u2ki + diy 

(45) 

Note that since the Dirac delta function forces k + 
p + q = 0, it follows that kxp=-kxq = qxk, 
and so £>kpq is symmetric under cyclic permutation 

of the wavevectors {k,p,q}, and it is antisymmetric 
under their pairwise interchange. 

The first term in the integrand of the integral 

h integrates to zero.  To see this, note that D (3) 
ip,h 

this term is antisymmetric under the interchange the 

dummy variables k and p. since ^kpq = —^pkq 
while the rest of the factors are symmetric in these 
variables. Subsequently, integration over k and p 
eliminates this antisymmetric term, leaving 

Ix = -iJJ2 / kxpx{kxdp - pxdk)bkbphq'Diipq   (A5) 

In general, I\ need not vanish; however, it will vanish 
if the topography has the point reflection symmetry, 
h(x,y) — h(—x,—y), as is the case for our elliptical 
topography. The point reflection symmetry implies 
/ik = h_^. If the topography has this symmetry, 
then changing the signs of all three wavevectors of 
integration changes the sign of the integrand (note 

^kpq - ^-k.-p.-q)' Thus' the vortex-topography 

interaction contributes to the form drag, D^ only if 
the topography does not have point reflection sym- 

metry. 

Next we turn to the vortex-vortex interaction. For 

this we have 

D (3) 
4>X -U 

f^xVx 

k2p2 9.k9phkhPh(l(~'i^U9<l)Vkpq 

(A6) 

= -U     kxpx[(kxpxU
2 + dkdp) + iU(kxdp - pxdk)) 

(A7) 

x(- 
qxU(-iqx + dq 

)6k6p/iqX>kpq. 
{iiu2 + d*) 

Expanding this integral further leads to an integrand 
containing several terms, but most of these can be 
shown to vanish by using the symmetry properties of 
X>k There are five different kinds of terms which 

appear in the expansion. We will name these /; for 
i =2-6, and discuss each separately. 

The next integral to consider is 

h - iU2 / q2kxpxqxdkdpdgbkbpbgV^p(l.       (A8) 

This integral vanishes for any topography. To demon- 

strate this, we first note that the fact that ^kpq ~ 

—V\.nrt allows us to write 

-U2 I (q2 - p2)kxpxqxdkdpdgbkbpbqT>iipcl 

\qp 

(A9) 
Then, by using the cyclic permutation symmetry of 
X>k     , we obtain 

h= \U2 j[(q2 -p2) + (k2 -P
2) + (P2 -q2)} 

x kxpxqxdkdpdqbkbpbqV^p(l. (A10) 

This last expression is seen to vanish identically on 
noting that the terms within the square brackets sum 
to zero. 

The next contribution is the integral 

h = iU4 J q2dqklp2
xqxbkbpbqVkpq. (All) 

This integral also vanishes for all topography as can 
be seen by interchanging the dummy variable k and 
p and noting that the integrand then reverses sign. 

Continuing, we have 

U = iU4  / q2{kxdpqx - PsfedjO&xPrrfe&kMg^kpq- 

(A12) 
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This expression can be simplified by interchanging k 
and p in the second term in the integrand and then 
adding the result to the first term. Thus 

U - 2iU4 / q2dpklpxqlbkbpbqVkpq. 

As in the case of I\, the resulting integral vanishes 
if /ijj. = /i_jc- This can be seen by noting that the 
changing the signs of all three wavevectors of integra- 
tion simply changes the sign of the integrand. Thus 
I4 only contributes to the form drag if the topography 
does not have point reflection symmetry. 

The next integral is 

h = U5j q2k2
xPlqlbkbpbgVkp(l. (A13) 

We can see that this integral vanishes for all topogra- 
phy by using the same steps that we used in the case 
of/2. 

The final integral is 

h = -U3 / q2(kxdpdq - pxdqdk - qxdkdp) 

x kxpxqxbkbpbqVkvCL. (A14) 

The third term in the parentheses will not contribute 
to the integral since for that term the integrand is 
antisymmetric under interchange of k and p. Then 
by interchanging k and p in the second term in the 
integrand, we obtain 

h = -2U3 / q2kxdpdqkxpxqxbkbpbqVi!.p(i     (A15) 

Even for topography with point reflection symmetry, 
this term need not vanish. Hence it is the only third 
order term that will contribute in the case of our el- 
liptical topography. 

To summarize, we have shown that in general 
I)(3) = Ii + J4 + I6, but in the case of topography 
with point reflection symmetry, as is the case of the 
elliptical topography, both I\ and I4 vanish. Also we 
have shown that for elliptically symmetric topogra- 
phy, there is no contribution to D^ directly from 
the vortex-topography interaction, except indirectly 
through the vortex-vortex interaction. 
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Abstract. Experiments are discussed which clearly show a lack of coupling between surface gravity currents and dramatic 
topography. Contrasts are given with other baroclinic flows over topography. The frequency dependence of the vertical 
structure of topographically induced flow structures is reviewed. This concept can then be used to interpret the differences 
between the gravity experiments and the other baroclinic flows. Further limits on the types of flows which inhibit coupling 
between topography and surface layers are given using numerical modeling. 

1 Introduction 

Surface gravity currents generated by warm or fresh 
sources of water are common features of coastal regions 
(Norwegian Coastal Current, Leeuwin Current and the 
Vancouver Island Coastal Current). The interaction of 
these strongly nonlinear flows with underlying topog- 
raphy is of interest, particularly when one considers 
the strong interaction of coastally upwelled water with 
topography such as the streamers associated with the 
Mendocino Escarpment shown in Willmott (1984). 

Following the study of Gill et al, (1986) which in- 
vestigated the effect of a step on a baroclinic current, 
experiments were performed to look at the effect of 
bottom topography on surface gravity currents and 
bores in a two layer fluid. The results were intriguing. 
There was basically no effect unless the surface layer 
directly interacted with the topography. These results 
contrasted sharply with the experiments of Gill et al., 
(1986) and the later experiments of Allen (1988). 

The next section will present the gravity current 
and bore experiments which will be contrasted with a 
number of baroclinic flows over topography from the 
literature in the following section. In section 4 linear 
theory will be invoked for a number of geometries to il- 
lustrate the frequency dependence of topographic cou- 
pling. Numerical simulations using flow over a canyon 
are used to put further limits on the flow conditions 
under which coupling will be inhibited. In the last 
section, an explanation and discussion linking all the 
results and explaining the lack of interaction of surface 
gravity currents and topography is given followed by 
a few conclusions. 

2 Gravity Currents over Topography 

2.1     Experimental Apparatus 

The experiments were performed in a tank of di- 
mensions 152.0 x 30.5 x 16.5 cm which was mounted 
on a 1 m diameter horizontal turntable which rotated 

counter-clockwise. For the first set of experiments a 
slab of styrofoam was wedged into the bottom of the 
tank, so that half the tank was 5 cm shallower than 
the other half. The second set of experiments incorpo- 
rated a sharp ridge of height 7 cm and width 1.5 cm 
completely dividing the tank into two sections. The 
Coriolis parameter, /, was varied from 0.26 to 1.3 s-1. 
The tank was filled to a height of H = 6.5 to 11 cm 
and salt was added to increase the density to give a 
reduced gravity (with respect to fresh water) of g' — 
3.3 to 9 cm s~2. For some experiments, a fresh water 
layer of depth /i2 = 1 to 2 cm was floated on top of 
the salt water. A dam was inserted into one end of the 
tank and fresh, dyed water was carefully floated onto 
the salt water in the manner of Stern et al. (1982) and 
Griffiths and Hopfinger (1983). The depth, hL, of fresh 
water behind the dam varied from 2.5 to 6 cm and the 
length, £, of the fresh water region was varied from 17 
to 25 cm. A full list of the experimental parameters is 
given in Tables 1 and 2. 

The experiment was started by removing the dam. 
The ensuing current was photographed both from 
above and the side (using a 45 degree mirror). By 
including a clock in the field of view, measurements of 
the speed of the current could be made. 

2.2     Results 

As the dam is pulled the fresh water flows out over 
the salt water. However, within an inertial period, 
the flow is turned to the right by the Coriolis force. 
Where the flow meets the wall, a gravity current is 
formed which flows down the tank, hugging the right- 
hand wall. The properties of rotating gravity currents 
(in the absence of topography) are described by Stern 
et al. (1982) and Griffiths and Hopfinger (1983). 

The gravity current travels down the right hand 
wall until it reaches the topography. Unless the 
gravity current hits the topography, the current it- 

self is unaffected by the topography. That is, no 
dyed fluid crosses the tank at the topography and the 
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Table 1: Experimental Parameters for Gravity Currents over a Step 

# I 
(cm) 

/ g 
(cm s_1) 

Ä1 

(cm) 
h2 

(cm) 
0. 

H 
(cm) 

(10.0 ± 0.2) 1    ( 15.0 ± 0.5) (1.06 ± 0.02) (5.7 ± 0.1) (5.0 ± 0.3) 

2      ( 15.0 ± 0.5) (1.08 ± 0.04) (5.6 ± 0.1) (5.0 ± 0.3) 0. (11.2 ± 0.2) 

3      ( 15.0 ± 0.5) (1.06 ± 0.02) (4.9 ± 0.1) (5.0 ± 0.3) 0. (11.4 ± 0.1) 

4 17.5 ± 0.5) (1.03 ± 0.02) (8.2 ± 0.1) (5.2 ± 0.3) 0. (10.0 ± 0.2) 

5 17.5 ± 0.5) (1.05 ± 0.02) (7.6 ± 0.1) (5.0 ± 0.3) 0. (8.5 ± 0.2) 

6 27.0 ± 0.5) (1.06 ± 0.02) (7.0 ± 0.1) (4.9 ± 0.3) 0. (8.5 ± 0.2) 

71 20.5 ± 0.3) (1.05 ± 0.02) (9.0 ± 0.1) (2.6 ± 0.4) 0. (9.3 ± 0.2) 

8 22.5 ± 0.3) (1.02 ± 0.02) (6.5 ± 0.1) (5.0 ± 0.5) 0. (11.9 ± 0.2) 

10 '21.6 ± 0.2) (1.04 ± 0.02) (8.1 ± 0.1) (4.5 ± 0.4) 0. (9.6 ± 0.1) 

11 [22.2 ± 0.2) (1.02 ±0.02) (7.9 ± 0.1) (4.9 ± 0.3) (1.0 ± 0.3) (10.2 ± 0.1) 

13 [19.2 ± 0.2) (0.262 ± 0.001) (3.5 ± 0.1) (3.6 ± 0.2) 0. (10.0 ± 0.2) 

14 [24.8 ± 0.2) (0.266 ± 0.001) (3.3 ± 0.1) (3.6 ± 0.2) 0. (8.0 ± 0.2) 

15 [22.0 ± 0.3) (1.02 ±0.02) (6.4 ± 0.1) (5.1 ± 0.3) 0. (7.0 ± 0.2) 

16 [23.6 ± 0.2) (1.07 ± 0.02) (5.7 ± o.r (5.1 ± 0.2) 0. (6.5 ± 0.1) 

17 (17.0 ± 0.1) (0.359 ± 0.003) (4.3 ± 0.1 (4.0 ± 0.2) (2.0 ± 0.2) (10.0 ± 0.1) 

18 (17.4 ± 0.1) (0.510 ± 0.002) (4.0 ± 0.1 (4.0 ± 0.2) (1.0 ± 0.2) (10.1 ± 0.1) 

19 (17.1 ± 0.L (0.515 ± 0.002) (4.1 ± 0.1 (4.4 ± 0.2) (1.0 ± 0.2) (10.0 ± 0.1) 

20 (17.1 ± 0.1 (0.532 ± 0.002) (4.1 ± 0.1 (4.5 ± 0.2) (1.5 ± 0.2) (10.1 ± 0.1) 

21 (17.0 ± 0.1 (1.05 ± 0.01) (4.1 ± 0.1 )     (5.0 ± 0.3) (2.0 ± 0.2) (10.0 ± 0.1) 

22 (17.2 ± 0.2 (0.528 ± 0.002) (4.1 ± 0.1 )      (6.0 ± 0.3) (3.0 ± 0.2) (10.0 ± 0.1) 

23 (17.0 ± 0.1 )      (0.517 ± 0.002) (4.1 ± 0.1 )     (3.0 ± 0.3) 0. (10.0 ± 0.1) 

24 (17.2 ± 0.1 )      (0.526 ± 0.002) (4.1 ± 0.1 )      (4.0 ± 0.3) 0. (10.0 ± 0.1) 

25 (17.1 ± 0.1 )      (0.519 ± 0.002) (4.2 ± 0.1 )      (5.0 ± 0.3) (2.0 ± 0.2) (9.9 ± 0.1) 

26 (17.1 ± 0.1 )      (0.519 ± 0.002) (4.1 ± 0.1 )     (3.9 ± 0.2) (1.0 ± 0.2) (10.0 ± 0.1) 

27 (17.0 ± 0.1 )      (0.521 ± 0.002) (4.1 ± 0.1 )     (5.0 ± 0.2) (2.0 ± 0.2) (10.0 ± 0.1) 

28 (17.4 ± 0.1 )      (0.517 ± 0.002) (4.1 ± 0.1 )      (4.1 ± 0.2) 0. (10.0 ± 0.1) 

29 (17.2 ± 0.1 )      (0.535 ± 0.002) (3.9 ± 0.1 )      (5.0 ± 0.2) (2.0 ± 0.2) (10.3 ± 0.1) 

30 (16.9 ± 0.1 )      (0.536 ± 0.002) (4.2 ± 0.1 )     (4.0 ± 0.3) (1.0 ± 0.2) (9.8 ± 0.1) 

31 (16.8 ± 0.1 )      (0.528 ± 0.002) (3.7 ± 0.1 )      (3.3 ± 0.2) 0. (10.0 ± 0.1) 

32 (17.1 ± 0.2 )        (1.31 ± 0.01) (8.3 ± 0.1 )      (3.0 ± 0.3) 0. (10.0 ± 0.1) 

33 (17.4 ± 0.1 )      (0.519 ± 0.002) (4.1 ± 0.1 )     (3.2 ± 0.2) 0. (10.0 ± 0.1) 

The gravity current started in the shallow water and flowed over the step into deeper water. 

Table 2: Experimental Parameters for Gravity Currents over a Ridge 

# e / 9 fl! h2 H 

(cm) (s-1) (cm s-1) (cm) (cm) (cm) 

38 (17.0 ± 0.1) (0.528 ± 0.002) (4.0 ± 0.1) (5.0 ± 0.3) (2.0 ± 0.2) (7.3 ± 0.1) 

39 (17.1 ± 0.1) (0.535 ± 0.002) (6.2 ± 0.1) (5.0 ± 0.3) (2.0 ± 0.2) (7.0 ± 0.1) 

42 (17.2 ± 0.1) (0.526 ± 0.002) (6.0 ± 0.1) (5.0 ± 0.2) (2.0 ± 0.2) (8.0 ± 0.1) 

43 (17.2 ± 0.1) (0.528 ± 0.002) (6.0 ± 0.1) (4.1 ± 0.2) 0. (8.0 ± 0.1) 

44 (i7.o ± o.r (0.532 ± 0.002) (6.0 ± 0.1 (4.1 ± 0.2) 0. (9.0 ± 0.1) 

45 (17.3 ± 0.1 (0.532 ± 0.002) (6.0 ± 0.1 (4.0 ± 0.2) 0. (10.0 ± 0.1) 

46 (17.3 ± 0.1 (0.524 ± 0.002) (6.0 ± 0.1 (4.0 ± 0.2) 0. (11.0 ± 0.1) 

47 (17.2 ± 0.1 )      (0.530 ± 0.002) (6.0 ± 0.1 )     (5.0 ± 0.2) (2.0 ± 0.2) (8.0 ± 0.1) 

48 (17.0 ± 0.1 )      (0.526 ± 0.002) (6.1 ± 0.1 )     (5.0 ± 0.2) (2.0 ± 0.2) (9.0 ± 0.1) 

49 (16.8 ± 0.1 )      (0.539 ± 0.002) (6.0 ± 0.1 )      (5.0 ± 0.2) (2.0 ± 0.2) (10.0 ± 0.1) 

50 (17.5 ± 0.1 )      (0.535 ± 0.002) (6.0 ± 0.1 )     (4.0 ± 0.2N 0. (7.5 ± 0.1) 
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Figure 1: Figure showing a gravity current a) approach- 
ing and b) passing over a ridge. The top part of each frame 
shows a side view whereas the lower part of the frame is 
from above. The marked squares are 10 cm x 10 cm. Only 
the centre part of the tank is shown. See Table 2 for pa- 
rameters; this is experiment 44. 

Figure 2: Figure showing a. gravity current a) approach- 
ing and b) bifurcating over a ridge. See Figure 1 for details 
of the field of view. See Table 2 for parameters; this is ex- 
periment 50. 

speed, depth and width of the gravity current remains 
the same (within measurement limits) as the current 
crosses the topography. An example, showing the cur- 
rent approaching and passing over a ridge, is given in 

Figure 1. 
In the absence of topography the gravity current 

generates a return flow in the deep water which is 
broad (stretches across the tank) and is about l/5th 
as strong as the current itself (Allen and Allen, 1995). 
Thus, the deep water flow must be affected by the to- 
pography; it is only the surface gravity current which 
is unaffected. 

Occasionally an eddy formed at the step after the 
passage of the head. This eddy would tend to move 
fluid across the tank. However, it was not the only 
eddy to form and not necessarily the largest. 

Deep water movement was observed under the grav- 
ity current, towards the barrier region. A deep current 

forms over the step in the two layer case running across 
the step away from the approaching bore. A sketch is 
given in Figure 3. This current is stronger for deeper 
original surface layers. Generally, this current forms 
after the current has traversed the step. 

If the current actually hit the topography, a sec- 
ondary current formed which crossed the tank, gen- 
erally to the left of the topography. Occasionally it 
would stray over the step and cross at as much as a 
45 degree angle. The original current continued with 
reduced size and speed. An example showing a gravity 
current hitting the ridge and bifurcating is shown in 
Figure 2. In a two layer fluid, the cross tank current 
usually took the form of a series of eddies. In the case 
of the step and a two layer fluid, an eddy formed where 
the current hit the jet and cross tank current/eddies 
formed out of this eddy. Examples for the two layer 
fluid are shown in Figure 4 and Figure 5. 
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Deep 

Approaching current 

Shallow 

Deep, return current, over a step 

Figure 3: Figure showing, from above, the deep return 
current seen over a step for a two layer fluid. The direction 
of the approaching bore is marked. 

3    Other Baroclinic Flows over Topog- 
raphy 

The lack of effect of a dramatic piece of topography 
is not common. This section presents three examples 
where topography strongly affects surface layers not in 

contact with it. 

3.1 Two layer geostrophic flow over a Step or 
Slope 

The experiments described in Gill et al, (1986) and 
Allen (1988) consider geostrophic flow forced over a 
step and slope respectively. The step was identical to 
the one described above. The slope was 4 cm high 
and 8 cm long. In both cases the flow was forced by 
placing a barrier along the wall, across the topography. 
In each case distinct cross tank flow at the topography 
is seen. An example of a numerical solution is shown 
in Figure 6. Note the flow out along the topography 
at the bottom on the slope and the flow towards the 
wall at the bottom. These along-slope flows are in the 
same sense as those in the lower layer even though 
the along-wall flows are in opposite directions (Allen, 

1988). 

3.2 Eddy experiments 

Consider a circular tank mounted on a rotating ta- 
ble and initially containing a homogeneous fluid at 
rest. If a constant flux of buoyant water is introduced 
away from the tank walls a circular anti-cyclonic eddy 
will form (Griffiths and Linden, 1981). If this is done 
over a sloping bottom, the eddy elongates in a direc- 
tion which keeps the shallow water to the right (in the 
direction topographic Rossby waves propagate). If the 
eddy is unstable, it breaks up into a string of eddies 
and each eddy propagates across the tank, again in the 
direction which keeps the shallow water on the right 
(Linden, 1991; Davey and Killworth, 1989). Thus, al- 
though the eddy is a surface phenomena, it directly 
feels the bottom topography. 

1 
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Figure 4: Figure showing a gravity current a) approach- 
ing and b) crossing over a ridge. See Figure 1 for details 
of the field of view. See Table 2 for parameters; this is 
experiment 42. 

Davey and Killworth (1989) give an analytic so- 
lution for the similar /?-plane problem assuming the 
lower layer is quiescent. In the laboratory case how- 
ever, the lower layer must move as that is the only 
way the upper layer could "feel" the bottom topog- 
raphy (unlike the ß effect). If one follows Davey and 
Killworth's arguments but considers a barotropic solu- 
tion (ignoring the density difference between the two 
fluids) one gets the same flow pattern as they derived 
for the linear baroclinic flow. Under the source itself, 
the flow is towards the deeper water ("south" ) whereas 
"west" of the north half of the source, the flow is to- 
wards the source and "west" of the south half of the 
source, the flow is away from the source. This derived, 
linear flow pattern is three quarters of an elongated 
anti-cyclonic vortex stretching out to the west of the 

3.3     Ridge 

Experiments conducted in Grenoble by D. Renouard 
(Allen et al, 1995) investigated barotropic tidal flow 
over a long bank or ridge in a two layer fluid. To gener- 
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Figure 5: Figure showing a bore a) approaching and b) 
splitting over a ridge. See Figure 1 for details of the field 
of view. See Table 2 for parameters; this is experiment 39. 

ate the tides, the ridge was oscillated. Measurements 
were made in the centre of the ridge of the velocity in 
each layer. The frequency of oscillation of the ridge, 
w and the period of rotation 4ir/f were varied. A 
number of experiments were performed (Germain and 
Renouard, 1991) but I will discuss only two examples 
here. 

The ridge is 30 cm high and 4 m long. The lower 
layer is 40 cm deep, the upper layer is 4 cm deep and 
the reduced gravity between the two layer is 6.5 cm 
s~2. Thus, the ridge is 3/4 of the depth of the lower 
layer and the topography can be classified as large. 
The ridge was oscillated back and forth 30 cm. 

For the first, a weakly rotating case, to/f = 0.67. 
The lower layer velocity has an amplitude of 5.5 cm/s 
in the cross-ridge direction and about 1 cm/s in the 
along ridge direction.   The upper layer velocities are 
2 cm/s across and about 1 cm/s along the ridge. 
Contrast these values with a strongly rotating case, 
u/f = 0.14. The lower layer velocities are 5 cm/s and 
4 cm/s across and along the ridge but the upper layer 
velocities are almost as strong at 3.5 cm/s across and 
3 cm/s along. 

Figure 6: Figure showing movement of tracers in a nu- 
merical simulation of the Allen (1988) experiments. The 
fluid is stratified, with the upper layer deeper near the wall 
initially. The tracers mark the upper layer inside the bar- 
rier. Note the movement out across the tank. Depth of 
upper layer 14.4 cm, depth of lower layer 7.9 cm, reduced 
gravity 4.24 cm s~2, barrier 5.1 cm from the wall. 

Thus at a high, although still subinertial, frequency 
there is weak coupling whereas at a much lower fre- 
quency the upper layer flows are almost as strong as 
the lower layer flow. 

4    Linear theories of the vertical height 
of topographic effects 

4.1     Steady Flow 

In Hogg (1973) steady, low Rossby number stratified 
flow over a circular cylinder is considered. If the fluid 
is homogeneous, by the theory of Taylor and Proud- 
man, a Taylor column will form over the cylinder and 
no streamlines from off the cylinder will penetrate the 
area over the cylinder. If the fluid is stratified, such 
behaviour is limited in vertical extent over the body. 
Hogg's theory gives the height to which a Taylor cone 
will exist in a stratified fluid, over a circular body, as 
L2/R2 times the height of the body, where L is the ra- 
dius of the body and R is the internal Rossby radius. 

In the flows considered here, the width of the to- 
pography is much greater than the width of the back- 
ground current. Assuming that in this case the ap- 
propriate lengthscale is the lengthscale of the current, 
all flows in sections 2 and 3 have L2/R2 of approxi- 
mately one. Thus, if these flows were steady (they are 
not) and of low Rossby number (they are not), they 
all should show topographically influenced flow right 
to the surface. 

4.2     Oscillatory Flow 

Rhines (1977) presents a coherent picture of subin- 
ertial waves trapped over a sloping bottom (his fast 
baroclinic waves). These topographic Rossby waves 
are trapped with a depth fX/N of the bottom for 
wavelengths of order of or smaller than the internal 
Rossby radius. The symbols /, A and TV represent 
the Coriolis frequency, one over the wavenumber, and 
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the Brunt-Väisälä frequency, respectively. For longer 
wavelengths the flow is barotropic. 

If one considers the topographic waves which travel 
along a simple linear slope between two flat basins (as 
would be appropriate for the slope geometry of sec- 
tions 2 and 3) the dispersion relation has a similar 
form to that for /?-plane Rossby waves. Long waves are 
non-dispersive; at some intermediate wavenumber the 
group speed goes to zero and thereafter the frequency 
decreases with wavenumber. For two layer flow over 
a slope, those waves having wavelengths of approxi- 
mately one internal Rossby radius have the highest 
frequencies (group speed near zero). 

Thus higher frequency motions are bottom trapped 
whereas long wavelength, low frequency motions are 
felt throughout the water column. Note that Rhines' 
theory is for low Rossby number and infinitely wide 

topography. 

5    Discussion 

Interpretation of the oscillating ridge experiments, 
section 3.3, follows directly from Rhines (1977) as- 
suming 1) the nonlinear nature of the flow is not im- 
portant in determining its vertical scale and 2) forced 
waves behave similarly to free waves. The fast subin- 
ertial frequency excites bottom trapped topographic 
waves whereas the slower frequency excites long, al- 
most barotropic Rossby waves. For these forced waves, 
the wavelength is the length of the ridge, N is approx- 
imately (g'/H)1/2 where H is the depth of the upper 
layer. This gives trapping within 4 cm of the ridge 
for the high frequency, low rotation rate flow which 
would imply little effect in the upper layer as is ob- 
served. For the low frequency, high rotation rate flow 
the wavelength is much greater than Rossby radius 
and as expected the effect of the ridge is strong in the 
upper layer. 

The eddy experiments are forced slowly. Fluid is 
added over many inertial periods. Thus the frequency 
of the forcing is low and it has barotropic as well as 
baroclinic character (fluid is not removed from the 
lower layer so the forcing is not purely baroclinic). 
This type of forcing leads to the generation of low fre- 
quency, long wavelength topographic waves. Invoking 
Rhines' theory, and again assuming the nonlinearity 
is not important to the vertical structure, these waves 
should be nearly barotropic. Thus the surface flow 
is strongly affected by the bottom topography in this 
case. 

The step and slope experiments with the barrier 
placed along the topography are also forced relatively 
slowly. Although the dam break is sudden, the initial 
response is flow parallel to the topographic contours. 
Only as the flow turns due to the Coriolis force does it 
"feel" the topography. Thus the frequency scales of the 
forcing of the topographic waves are fairly low. As is 

Slow Forcing. Upper Layer Interface Height at l.OOOd 

-.11 to .11 by .31 

Figure 7: Figure showing a the surface elevation one day 
after forcing began. The contour levels are in metres. The 
domain is 240 km by 120 km and the position of the canyon 
is marked. The surface layer is 50 m deep and the lower 
layer is 200 m deep in the canyon, 100 m deep over the 
shelf. The reduced gravity between the two layers is 0.1 m 

observed, these waves have near barotropic behaviour 
and the surface flow is affected by the topography. 

In the surface gravity current experiments, on the 
other hand, the current topography interaction is quite 
quick. The subinertial frequencies generated are close 
to / and these waves are bottom trapped. Thus cur- 
rents at the topography are seen in the lower layer but 
the upper layer is unaffected by the topography. 

6    Complications due to wavelength 

Numerical and analytic modelling (Allen, 1995) has 
considered multi-layer flow over a canyon. Here we will 
consider two layers where the lower layer is in contact 
with the topography but the upper layer lies above. 
The flow is forced by assuming that wind forcing gen- 
erates an Ekman layer which, through Ekman pump- 
ing, removes water from the main fluid column over 
the shelf. The Ekman layer is not modeled and the 
Ekman pumping is modeled as a sink. Simplifying the 
problem further, here we neglect the shelf break. 

The wind is assumed to start at zero and linearly 
increase in intensity over one half of an inertial pe- 
riod. Thereafter it decreases linearly in intensity. The 
surface elevation (which approximates the upper layer 
streamlines) after one day (about 1.4 inertial periods) 
is shown in Figure 7. The effect of the canyon is clearly 
visible with along canyon, down pressure, flow gener- 
ated within the canyon. 

To consider the fast introduction of topography, a 
case with a flat bottom was forced in the same way as 
above. After one day, a canyon was suddenly added. 
The lower layer flow in the canyon was reduced to con- 
serve momentum and match the flux across the canyon 
walls. The surface elevation is shown in Figure 8 one 
day after the canyon was introduced (two days after 
the start of the flow).   The surface flow is similar to 
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Sharp Forcing, Upper Layer Interface Height at 2.000d 

Figure 8: Figure showing the surface elevation one day 
after a canyon was introduced; see text. Other parameters 
as in Figure 7. 

the gently forced case and is strongly affected by the 
topography. The pattern is noisier because the sharp 
introduction of the canyon generates Poincare waves. 

This numerical experiment illustrates that the fre- 
quency of the forcing is not the sole mechanism for 
determining the wavelength and frequency of the topo- 
graphic waves. At the time the canyon is introduced, 
the surface and interface elevation change from high 
to low values along the canyon. Thus the wavelengths 
of the topographic Rossby waves which travel along 
the canyon (Chen and Allen, 1995) are of order of the 
Rossby radius up to half the size of the domain. The 
long waves are primarily barotropic (assuming Rhines' 
(1977) theory holds) and so the surface flow is influ- 
enced by the topography. 

Various numerical complications make it difficult to 
consider the unrealistic case of flow over a canyon near 
the wall. Consider again the experiments. The width 
of the gravity current and the flow set up by the barrier 
along the wall were similar as the barrier was placed, 
in some cases, closer than a Rossby radius to the wall. 
In this case frequency of forcing, not the initial along- 
topography wavelength, gives an explanation. 

7    Conclusions 

Linear theory (Hogg, 1973 and Rhines, 1977) gives 
the basis for determining the vertical scale of topo- 
graphic influence. Nonlinear effects do not seem to 
be important. From the type of forcing and the ge- 
ometry, the frequency and wavelength of the topo- 
graphic Rossby waves is estimated and compared to 
the Rossby radius. Provided short wavelength, high 
frequency waves are generated the flow is confined to 
\f/N of the bottom. Lower frequency, long waves are 
expected to follow the Hogg limit of L2/R2H. 

The above explanation was applied to the labora- 
tory results for gravity currents over steps and slopes, 
eddies over a slope, oscillatory flow over a ridge, and 

the   numerical   results   for   wind   driven   flow  over   a 
canyon. 
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Abstract: Laboratory experiments in continuously stratified fluids with internal waves breaking on planar bottom 
slopes indicate that while mixing is most intense near the local critical frequency co0 contributions to mixing are 
observed over the frequency range where 0.5 < a/mc < 2.5. For the critical case when the turbulence is most 
energetic, the turbulent benthic layer is not well mixed. The benthic layer varies in thickness over a wave cycle and 
the laboratory data indicate the mean thickness h is 15% of the wavelength of the incident wave, measured 
perpendicular to the slope. A simple model relates the mean rate of dissipation of turbulent kinetic energy s and the 
diffusivity K within the benthic layer to the properties of the incident wave field, and yields a simple criterion for a 
buoyancy flux to occur within the benthic layer. Even though this criterion appears to be readily satisfied in the field, 
available observations do not yield clear evidence of a buoyancy flux. The turbulent activity in the benthic layers on 

• the sloping bottoms therefore must be significant for the chemical and biological productivity, but the consequences 
for basin scale mixing in either lakes or the oceans are as yet undetermined. 

Introduction 

The dynamics of the turbulent benthic boundary layers 
and their role in mixing and transport processes on the 
basin scale have long been an area of great interest, 
particularly since Munk (1966) suggested that mixing at 
the boundaries could be responsible for the basin scale 
vertical mixing. Much attention has since been focussed 
on mixing at the boundaries, e.g., in recent review 
articles by Garrett, MacCready and Rhines (1993) and by 
Imberger (1994), with application to oceanography and 
limnology, respectively. 

Models of the near boundary flows resulting from 
turbulence near a sloping bottom have been proposed 
(e.g., Phillips et al. 1986, Garrett 1990, Salmun et al. 
1991) based on assumptions about the distribution of 
turbulent diffusivity with height above the bottom. 
Imberger and Ivey (1993) showed that a number of flow 
regimes were in fact possible, depending on the relative 
magnitudes of two ordering parameters: the Grashof 
number Gr = (gAphVp^cosß and the aspect ratio A = 
h/L « 1. In their formulation the benthic layer was 
assumed well-mixed over a depth h, Ap was the density 
anomaly between the well-mixed boundary layer and the 
interior, L the along-slope scale characterising the 
background density gradient variability, ß the bottom 
slope, and K the eddy diffusivity within the benthic layer, 
assumed the same for momentum and species. Using a 
perturbation solution in the small parameter A, they 
argued that in the flow regime likely to be relevant to 
lakes when Gr = 0{A'3/2), the interior vertical eddy 
diffusivity Kr at the depth of the density gradient 
extremum was given by 

K, ■■(sxlQT6) 
4   9        3 2 

-6\Nh  sin /teos ß 

K3LK 

(1) 

where LB is the horizontal basin dimension and TV" is the 
maximum value of the buoyancy frequency in the 
thermocline. 

In order to utilise such models, one therefore needs a 
knowledge of both the readily determinable geometrical 
properties of a basin, such as the bottom slope and basin 
size, but also two properties of the flow field: the benthic 
layer thickness h and the turbulent diffusivity K. As eq. 
(1) illustrates, the interior diffusivity AT/ is particularly 
sensitive to the choice of either parameter, a conclusion 
which holds no matter what flow regime governs the 
dynamics of the benthic layer on the slope. The 
specification of the these two flow parameters is the issue 
we wish to address in the present work, and our focus 
here is on the mechanisms driving mixing at the 
boundary and how they influence h and K. 

While the near boundary mixing can be driven by a 
mean flow over the hydraulically rough boundary, the 
more likely mechanism for driving boundary mixing is 
due to the interaction of the internal wave field with the 
sloping bottom - an observation which has motivated a 
number of laboratory studies (e.g., Ivey and Nokes 1989, 
Taylor 1993, De Silva et al. 1995 ) and field studies (e.g., 
Eriksen 1985, Eriksen 1995, Thorpe et al. 1990, Van 
Härene/ al. 1994). 

Laboratory Experiments 

There have been three laboratory studies which have 
investigated breaking internal waves on slopes with a 
monochromatic incident internal wave: an initial study 
by Ivey and Nokes (1989,1990) conducted on a 30° 
bottom slope and over a range of incident frequencies 
around the critical frequency coc (group velocity vector of 
the reflected wave parallel to the bottom slope); a study 
by Taylor (1993) on a 20° bottom slope and confined to 
the critical frequency; and a study by De Silva et al. 
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(1995) on a 20° bottom slope using a very different 
configuration for generating internal waves and focusing 
on the frequency range above the critical frequency. 

Ivey and Nokes (1989) showed that at the critical 
frequency a turbulent benthic boundary layer formed 
along the bottom. The thickness of the benthic layer h 
varied over the wave cycle, with maximum thickness 
during the upslope phase of the motion. The turbulence 
intensity in the layer also appeared to vary, although no 
direct measurements were made of turbulence properties. 
Sustained forcing over many wave cycles led to a change 
in potential energy P of the fluid in the laboratory tank. 
The average mixing efficiency in the benthic region over 
a wave cycle defined as Rf=PfW, where Wwas the net 
energy input into the benthic region, was dependent on 
wave amplitude but had a maximum value of Rf =0.2, 
indicating the process can be quite efficient compared to 
other mixing mechanisms (e.g. Ivey and Imberger 1991). 
As seen in Figure 1, the mixing efficiency also varies 
with frequency m with the maximum near the critical 
frequency coc but still a significant contribution coming 
from a bandwidth in the range 0.7 < {co/coc) < 1.8. For a 
typical internal wave spectrum in the ocean or lake, the 
implication is that even though the mixing efficiency is 
lower away from the local critical frequency, there can 
still be a significant contribution to mixing, particularly 
for the sub-critical frequencies with higher energy levels. 

Taylor (1993) extended these experiments to a lower 
bottom slope of 20° and, by examining the microstructure 
signals in the boundary layer, confirmed that the 
turbulence intensity varied in intensity over a wave cycle. 
The most intense mixing occurred on the upslope phase 
of the wave cycle - as also observed in the field observa- 
tions reported by White (1994) and Van Hären et al. 
(1994), for example. Mixing efficiencies were slightly 
smaller but comparable to those reported by Ivey and 
Nokes (1989). The direct numerical simulations reported 
by Slinn and Riley (1994) were the first to examine the 
case of critical waves on very low slopes down to 3.4°. 
Their results suggested that for steep slopes (defined to 
be greater than 20°) the mixing appeared nearly contin- 
uous over the wave cycle, while for shallow slopes 
(defined to be less than 10°) the mixing was more inter- 
mittent in nature over a wave cycle. Mixing efficiencies 
were reported as high as 0.39, but as there are differences 
in the definition between the numerical calculation and 
the laboratory experiments, it is difficult to draw defini- 
tive conclusions. From measurements of the velocity 
field, Taylor (1993) observed a strong interaction 
between the upslope and downslope flow and concluded 
that the mechanism generating the turbulence was not 
simply described by either a simple shear flow or a 
convective type instability, but had elements of both 
depending on the phase of the wave cycle and position 
relative to the bottom. 

These early experiments had used a flap wavemaker at 
one end of a long channel which produced a wave with 
wavelength comparable to the slope length. The flow 
field was more in the nature of flow in a horizontal duct 
rather than a discrete wave ray impinging on an infinite 
planar slope. Recently, De Silva et al. (1995) have used 
a rather different means of generating the internal wave 
as shown schematically in Figure 2. The configuration 
has the advantage of producing an internal wave ray with 
wavelength small compared to the length scale of the 
slope and minimises the potential geometrical 
dependence introduced by the presence of the wedge 
shaped region at the top of the slope, of particular 
importance to the study of supercritical wave reflection. 

W/CD 

Figure 1. Cycle averaged mixing efficiencies as a function of 
forcing frequency where the incident wave amplitude is fixed in 
all cases. Paddle amplitude A = 2.2 cm and ß = 30. 

Wavemake 

Figure 2. Schematic of horizontal articulated internal wave 
maker as employed by Teoh et al. (1995) and De Silva et al. 
(1995). Wavemaker is arranged so there is zero net 
displacement at the surface and a confined wave ray, of 
horizontal scale 1.5 wavelengths, is directed down onto the 
sloping bottom. 
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(a) 

(b) 

Figure 3. Rainbow schlieren images of breaking internal waves taken just after mixing has initiated. In 
Figure 3a, colcoc = 2.07 and in Figure 3b a>/a>c = 2.43. In both cases the incident wave amplitude is 2 cm. 
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In Figure 3 we show two rainbow schlieren images of 
the waves breaking on the slope. The schlieren 
technique used is described in some detail by Ivey and 
Nokes (1989), and the optical arrangement used here is 
identical. In Figure 3a we show the case where co/coc = 
2.07 with the incident ray coming in from the top right 
and reflecting forward toward shallow water on the left, 
and the image is taken a few cycles after the initiation of 
paddle motion. Even at this relatively high forcing 
frequency compared to the critical frequency, a mixing 
region is observed which has developed at the slope itself 
and extends along the slope a distance of the width of the 
incoming ray. Conversely at the higher forcing 
frequency in Figure 3b where co/coc = 2.43, the mixing 
region has been established off the slope and there is a 
laminar region immediately adjacent to the slope. With 
continual wave forcing, the mixing region grows and 
extends down to the bottom. Thorpe (1987) has shown 
that non-linear second and third order resonances can 
occur between incident and reflected waves, which lead 
to regions of static instability off the slope, reminiscent of 
what is shown in Figure 3b. However, the theory 
predicts this should only occur for bottom slopes ß < 10°, 
considerably less than the 20° in figure 3, so the 
explanation of this observation is not yet clear. Note also 
that mixing is occurring at a range beyond that shown in 
Figure 1, implying that if there is enough energy 
available in the incident wave field at a given frequency, 
mixing can occur over a surprisingly broad bandwidth. 

In Figure 4 we show some typical results of 
microstructure profiles over the depth. Note that the 
resolution of measurements made with the conductivity 
and temperature probes is comparable with that of the 
schlieren system which is able to resolve spatial scales 
down to about 0.7 mm (Taylor 1993). From the density 
profiles which extend to within 5 mm of the bottom, 
while there is variability during the wave cycle there is 
no evidence of any persistent well mixed regions close to 
the bottom. If we take the turbulent benthic region as the 
height at which overturning scales shown in the second 
panel disappear, the benthic layer is about 10 cm thick - 
consistent with the visual observations in Figure 3. Note 
also that the turbulence intensity does vary over the cycle 
where even the largest displacement scales are, at most, 
about 20% of the total thickness of the benthic region. 

Mixing in the benthic region 

These observations suggest the following simple 
mixing model. Consider the configuration shown in 
Figure 2. For an internal wave train in two dimensions, 
linear theory (e.g. Phillips 1977) indicates the velocity 
and density perturbations are described by 

w = a cos 0cos{kx+nz-cot) 
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Figure 4. Microstructure profiles through a typical wave cycle 
once mixing has been initiated. Parameters are N = 
0.64 re"1, co = 0.45 re"1, wave amplitude 2.9 cm. Profiles are at 
intervals of 0.14 (In/co). In the first panel, all profiles are 
displaced by 0.01 gm/cm3 from the first profile. The second 
panel shows sample displacement scales and the third panel the 
corresponding buoyancy anomaly g'. 

u - -as\r\0cos{kx +nz - cot) (2a.b.c) 

p = p0N  cos 0sin(kx+nz-cot) 

where u and w are the horizontal and vertical velocities 
(x and z direction, respectively), k and n are the 
horizontal and vertical wavenumbers, p is the density 
perturbation, a is the maximum particle speed and 0 the 
angle of the group velocity vector to the horizontal. The 
average over one wave period of the vertical energy flux 
passing though a horizontal surface with dimensions of 
one wavelength in the x direction and unit width in the y 
direction is 

% 2 
—p0a Csm0 
k 

(3) 

where C is the phase speed. 
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When the waves are incident on a bottom of slope ß, 
the reflected energy is in general given by Er = (\-r)Et, 
(where the reflection coefficient r = 0 for perfect 
reflection). On the basis of the laboratory observations of 
Ivey and Nokes (1989), Taylor (1993) and De Silva et al. 
(1995), it seems reasonable to assume that for the case of 
critical wave reflection, once a turbulent mixing layer is 
established along the bottom, no energy is reflected at the 
incident or at any other frequency - due to dispersion in 
the frequency content resulting from mixing in the 
turbulent region, for example. 

Then for the critical case, the average dissipation over 
one wave cycle is 

E,      E, 

M    p0hl 
(4) 

where M is the mass of fluid (per unit width) in which 
the incident wave energy is dissipated, h is the average 
thickness of the benthic layer and / is the along-slope 
length over which mixing is occurring. 

In Figure 5a we plot the observed values of boundary 
layer thickness h obtained by Ivey and Nokes (1989) 
against the Reynolds number based on incident wave 
properties. It is apparent that above a minimum Reynolds 
number of about 50, the observed value of boundary 
thickness h is remarkably constant in the range of (0.10 - 
0.15)^v, where \ is the wavelength of the incident wave 
measured perpendicular to the slope. In Figure 5b, we 
plot similar observations from De Silva et al. (1995), and 
while the data set is small it appears h « 0.15A.v for 
supercritical waves as well although there may also be 
some dependence on wave amplitude. These results are 
also consistent with the experiments of Taylor (1993) 
(see his Figure 3, for example), and the field data of Van 
Hären et al. (1994) and White (1994), although smaller 
than the values found by Slinn and Riley (1994). 

If we take the benthic layer thickness as h = 0.15A,v 

then this can be written as 

h = 0.\5 
In 

I 2 2 
k  +n   cos2/? 

(5) 

Substituting (5) into (4) and noting from the geometry 
that / = nl (k cos ß), we obtain 

(      2     A 
3a N 

sin4/?cos/7 (6) 

Using the result from Osborn (1980), the eddy diffusivity 
for the stratifying species in the benthic boundary layer 
can thus be written as 

K = 
R, 

l-R, 

3a 

AKN 
sin4/?cos/? (7) 

A necessary condition for the turbulence to be sufficiently 
energetic to sustain a buoyancy flux is ~slvN > 15 (e.g. 
Ivey and Imberger 1991), where s is the instantaneous 
dissipation rate. Cycle averaged values (e.g. Ivey and 
Nokes 1989, Taylor 1993) are about a factor of two lower 
than this, so a conservative estimate would say 
~elvN > 15 is a necessary condition for a buoyancy flux. 

Ivey and Imberger (1991) also demonstrated that the 
value of the mixing efficiency ^depends strongly on the 
turbulent Froude Number defined as FrT = (Lo/L)m, 
where the Ozmidov scale Lo = {s/N3)m and the 
displacement scale is Lc. If FrT = 1, then the mixing is 
highly efficient with Rf = 0.2, but for values of FrT either 
above or below FrT = 1, the value of ^decreases rapidly. 
Laboratory observations (De Silva et al. 1995) and field 
observations (see below) indicate that FrT = 1 only 
occasionally and it appears to vary greatly from profile to 
profile. 
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Figure 5. Measurements of boundary layer thickness obtained 
from schlieren images, (top) panel shows data from Ivey and 
Nokes (1989) where C, is wave amplitude, (bottom) panel 
shows data from experiments by De Silva et al. (1995) in the 
configuration shown in Figure 2. 
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It is tempting to generalise the arguments above to the 
case of non-critical reflection where 0<r<1, hence (6) 
becomes 

s = r 
3a■ N 

4TT 
sin4/?cos/? (8) 

Javam et al. (1995), for example, have examined the 
reflection of an internal wave at a critical level, and find 
the reflection coefficient varies between 0.2 to 1.0, 
depending on the Reynolds number. Comparable calcu- 
lations thus need to be made for waves reflecting off the 
bottom when a turbulent mixing region is present in 
order to utilize (8). 

Field observations 

Using data from Lake Biwa, Japan, Imberger (1994) 
demonstrated that in order to explain the typical internal 
wave spectral levels and relatively rapid decay of large 
scale internal waves, generated by aperiodic wind events 
for example, the benthic boundary regions must be 
regions of very high dissipation compared to the interior 
- at least two orders of magnitude larger than typical 
interior levels of dissipation of order 10"9 m2 s3. In the 
ocean, Eriksen (1985) estimated that 8% of the Garrett 
Munk internal wave energy flux had to be converted to 
potential energy to yield Munk's (1966) canonical 
interior vertical diflusivity of 104 m2 s1. More recent 
calculations (e.g. Gilbert and Garret 1989) and 
measurements (e.g. Eriksen 1995) imply values an order 
of magnitude less than this seem more likely. Only 
recently have observations been made which have 
attempted to link the internal wave field, near boundary 
turbulence and the resulting buoyancy flux. 

Thorpe et al. (1990) and White (1994) describe results 
from the Hebrides Slope, where the M2 internal tide is 
locally critical to the bottom slope, which show clear 
evidence of enhanced mixing on the upslope phase of 
motion, and much weaker mixing in the downslope 
phase, as seen in the laboratory experiments. With a 
local vertical wavelength of about 1 km, White (1994) 
shows evidence of mixing up to and including their last 
instrument at 110 m off the slope - consistent with the 
laboratory prediction of benthic layer thickness in Figure 
5a. Van Härene/ al. (1994) find benthic layers of height 
of thickness 10 m when the local vertical wavelength was 
120 m. Intriguingly, while their dissipation estimates 
indicate that ~e IvN « 400, they were unable to find any 
evidence for significant buoyancy fluxes. 

Eriksen's (1995) observations from Fieberling Guyot 
seamount in the North Pacific clearly show significant 
levels of enhanced activity near the local critical 
frequency of 0.42 cph where N = 1.02 cph (i.e. ß = 24°). 
With a vertical wavelength of 3 km, equation (5) predicts 

turbulent activity up to a level of some 450 m off the 
bottom, although this is clearly an oversimplification of 
the issue for such large vertical wavelengths. Such a 
steep bottom slope would suggest relatively continuous 
mixing over a wave cycle. Taking ß= 24°, N = 1.02 cph 
and taking as the incident wave field the background GM 
spectrum close to the bottom, we obtain (e.g. Eriksen 
1995 figure 3a) a « 0.5 cm s1, and hence from (6) 
f=lxl0-8 m2 s"3. Toole et al. (1994) report direct 
microstructure measurements near the base of Fieberling 
Guyot. Their results clearly show an increase in 
dissipation as the bottom is approached with the deepest 
estimate, still some 500 m off the bottom, having a value 
off=10-9m2s"3. 

Microstructure measurements in the benthic boundary 
layer in Lake Kinneret, Israel have been reported by 
Imberger et al. (1995). One of the most striking features 
of their results shown in Figure 6 is the considerable 
variation in the turbulent Froude number FrT. Many 
events occur which have Froude numbers very different 
than one, implying the mixing efficiency Rf is very small 
and the events have little or no buoyancy flux associated 
with them. The implication is that even if the dissipation 
is significant compared to background levels, the 
buoyancy flux or species diffusivity K, may be negligibly 
small. 

10' 10" 

Turbulent Reynolds Number 

Figure 6. Microstructure measurements in the benthic 
boundary layer in Lake Kinneret, Israel from Imberger et al. 
(1995). Data plotted on an activity diagram where the 
Turbulent Froude number FrT = (Lo/Lc)273 and the Turbulent 
Reynolds number Rex = (LJhtf13. The Ozmidov scale L0 = 
(e/N3)"2 is based on the re-sorted density profile, I* is the 
Kolmogorov scale and Lc is the displacement scale. 

Conclusions 

Recent laboratory experiments give some insight into 
the dynamics of the turbulent mixing region that can 
form along a sloping bottom boundary in a continuously 
stratified fluid where mixing is driven by breaking 
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internal waves. Using a simple model, it is possible to 
obtain expresions for the benthic layer thickness h and 
the turbulent diffusivity K within this benthic region in 
terms of the properties of the incident wave field. 
Further laboratory and numerical experiments need to be 
conducted, particularly for non-critical waves, to test the 
validity of these expressions. Both in the laboratory and 
the field, care is needed in distinguishing between the 
measurements made from instantaneous measurements 
and values valid over one wave cycle and longer. 

While the evidence so far is hardly conclusive, it may 
transpire that the benthic layer on the sloping bottom is 
one of enhanced turbulent dissipation but with a 
negligible turbulent buoyancy flux. This has significant 
implications for circulation modelling and for the 
chemistry and biological processes near the boundary in 
lakes and the ocean (cf. Imberger 1994). Such a scenario 
does explain one obvious feature of lakes: they stay 
stratified unless seasonal cooling occurs. Only careful 
experiments in the future will enable these questions to 
be answered. 

This work  is  supported by the  Australian Research 
Council. Environmental Dynamics Report ED 807 GI. 
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Rectified Flows over a Finite Length Shelf Break: a 
Bank and a Canyon Case 
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Abstract. 
Rectified processes over a submerged elongated bank and over a canyon in an otherwise long shelf 
break were investigated by means of numerical and laboratory experiments for the bank and by 
means of numerical experiments only for the canyon. 
The physical experiments were conducted in the Grenoble 13 m diameter rotating tank.   The 
background oscillating motion was obtained by periodically varying the platform angular velocity. 
Fluid motions were visualized and quantified by direct velocity mesurements and particle tracking. 
The numerical model employed was a tridimensional model developed by Haidvogel et al. [1991]. 
It consists of the traditional primitive equations; i.e., the Navier-Stokes equations for a rotating 
fluid with the addition of the hydrostatic, Boussinesq and incompressibility approximations. 
In the bank case, both the laboratory and numerical experiments show that in the range of 
dimensionless parameters considered, two distinct flow regimes, based on general properties of 
the rectified flow patterns observed, can be defined.   It is further shown that the flow regime 
designation depends principally on the magnitude of the temporal Rossby number, Rot, defined 
as the ratio of the flow oscillation to the background rotation frequency.   Good qualitative and 
quantitative agreement is found between the laboratory experiments and the numerical model for 
such observables as the spatial distribution of rectified flow patterns. 
In the canyon case, although the geometry is quite different, strong similarities are observed 
especially the existence of flow regimes having a strong analogy with the ones identified in the 
previous case.   The temporal Rossby number, Rot, is also an essential controlling parameter 
although the standard Rossby number, Ro, interplays significantly.  The most important result 
however, in this case, is the capability for the canyon to be a downstream source of mean rectified 
current at distances which are large with regard to the horizontal scale of the canyon . 

Introduction Whatever the direction of the unsteady forcing flow 
is, the local mean rectified flow is in a direction such 

The nonlinear generation of a mean flow by oscil- that the shallow water is on the right, facing down- 
latory or other unsteady currents or turbulence (i.e. stream (in the Northern Hemisphere).   In the case of 
rectification), is for the most part studied in relation a simple slope, the topographically equivalent /3-effect 
to the ubiquitous presence of tides.  Such rectification will therefore induce a rectified "westward-equivalent" 
processes have been observed in numerous places, for current.   The amplitude of this rectified flow can be 
instance along the Georges Bank [Butman et al., 1982; a significant fraction of the amplitude of the forcing 
Tee, 1985] and along the La Chapelle Bank [Garreau flow.  Consequently, rectification can contribute signif- 
and Maze, 1991]. There are also observations of recti- icantly to mean current systems in the vicinity of the 
fied flows around Bermuda [Stommel, 1954], Fieberling shelf break and, by extension, to the structure of the 
Guyot in the North Pacific [Genin et al., 1989; Erik- coastal current system itself. 
sen, 1991], in the Bay of Biscay [Pingree and Le Cann, In the context of tides, Robinson [1981] described 
1990], in the Straits of Dover [Brylinski and Lagadeuc, three possible generation mechanisms for a rectified 
1990] and the North Sea [Maas and Van Raren, 1987]. flow: (i) the change in relative vorticity necessary for 
Rectification may not be only driven by tides but by a the conservation of potential vorticity, (ii) the genera- 
complete spectrum of motions as discussed by Holloway tion of vorticity when there is lateral shear in a flow, 
[1987]. This may include for example, long and short even when the depth is uniform, and (iii) the gener- 
periods of wind forcing [Haidvogel and Brink, 1986]. ation of vorticity due to the shear in the depth dis- 

tributed friction force when there is a depth variation 
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in a direction normal to the local velocity. The sec- 
ond mechanism appears only if one adopts a quadratic 
representation of the bottom friction. Note that depth 
variation alone, may be sufficient to support rectifica- 
tion. Zimmerman [1978] derived the applicable vortic- 
ity equation depending on the presence of depth vari- 
ations and Coriolis and viscous effects. It is seen that 
rectification requires a phase shift between the vorticity 
field and the background tidal current. 

Among the theoretical studies employing these mech- 
anisms for depth independent models are those of Huth- 
nance [1973, 1981], Zimmerman [1978, 1980], Tang and 
Tee [1987], Loder [1980] and Loder and Wright [1985]. 
Maas and Zimmerman [1989a, 1989b] have developed a 
numerical model for oscillatory, stratified flow normal 
to infinitesimal shelf breaks. Their resulting along- and 
cross-isobath residual and tidal circulations and isopyc- 
nal elevations have a well-defined localized structure in 
the cross-isobath vertical plane. More recently, Chen 
[1992] considered numerically the tidal rectification of a 
stratified ocean in the vicinity of two-dimensional model 
topography, including a model for Georges Bank, and 
suggests that stratification plays a significant role in the 
spatial structure of the rectified currents. Garreau and 
Maze [1991] developed an interpretative model for their 
observations near La Chapelle bank in which they indi- 
cated that the nonlinear dynamics of an inviscid ocean 
can act as a flow rectification mechanism. 

Motivated by field observations in the vicinity of 
Fieberling Guyot, Boyer et al. [1991] studied the os- 
cillatory motion of a homogeneous, rotating fluid in the 
vicinity of an isolated topographic feature, both in the 
laboratory and numerically. The experiments clearly 
showed that a mean anticyclonic vortex is formed above 
the topographic feature, and that the spatial and tem- 
poral Rossby numbers of the background flow are key 
parameters for determining the typical trajectories. This 
analysis was extended to stratified oscillating flows [Bo- 
yer and Zhang, 1990a, 1990b; Zhang and Boyer, 1993]. 
Little interest seems to have been brought so far to rec- 
tification effects associated with the presence of canyons 
although canyons by themselves have been recognized 
as having possible important dynamical influences for 
example in the Mediterranean [Maso et al, 1990]. 

The purpose of the present study is to explore the 
flow characteristics, including rectified currents, result- 
ing from a homogeneous, zero-mean, oscillatory motion 
past over a submerged elongated bank next to a ver- 
tical wall boundary and over a canyon in an otherwise 
infinitely long shelf break of constant cross-section. The 
general emphasis is on obtaining a better understand- 
ing of the motion fields produced by the interaction of 
oscillatory background motions with idealized topogra- 
phy. But more specific interest is with considering how 
longitudinal variation of the transverse topographic gra- 
dients may be a source of rectification. Both numerical 
and laboratory approaches are used so that intercom- 

Case Ro Rot X 
1 0.041 0.40 0.32 
2 0.041 0.60 0.22 
3 0.041 0.80 0.16 
4 0.041 1.20 0.11 
5 0.081 0.60 0.43 
6 0.081 0.80 0.32 
7 0.081 1.20 0.21 
8 0.081 1.59 0.16 
9 0.122 0.60 0.64 
10 0.122 0.80 0.48 
11 0.122 1.20 0.32 
12 0.122 1.59 0.24 
13 0.127 0.16 2.50 
14 0.139 0.22 2.00 
15 0.134 0.28 1.50 

Table 1. Dimensionless parameters for the various numer- 
ical and laboratory experiments performed over the bank. 

parisons can lead to a deeper understanding of the phys- 
ical processes involved. So far only numerical computa- 
tions have been used in the canyon case but laboratory 
investigations are underway. 

The layout of the paper is as follows. In Section 2, the 
physical and numerical model systems are presented. In 
Section 3 the results obtained with the bank obstacle 
are discussed. Section 4 relates the results for the recti- 
fied flow over the canyon. Finally in Section 5, general 
conclusions are being presented. 

Model System 

Physical and model flow 

In this work, we consider the interaction of an oscil- 
lating, along-shore current with (i) an elongated topo- 
graphic bank located along a vertical side wall (Figure 
1) and (ii) a canyon cutting an infinite length shelf break 
(Figure 2). The same bank model was used for both the 
laboratory and numerical experiments. 

The bank. A layer of homogeneous fluid is confined 
by a rectilinear wall. The depth of this layer is H. The 
system rotates about a vertical axis with an angular ve- 
locity tt (Coriolis parameter f = 20,). A bank, whose 
maximum height is ho, is placed along the wall. The 
horizontal direction along the coast is denoted as x, y is 
the direction normal to the coast, while z is vertically 
upward. The origin of this cartesian coordinate system 
is at the free surface along the coast (wall), at the cen- 
ter of the topographic feature. In the mid-transverse 
section, the height of the bank is defined as: 

h = ho 

ho ■ cos2ir(y - 

h = 0 

0<y<D/2 

D/2)/D     D/2<y<D  (1) 

y>D 
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But relation (1) also describes the profile for a vertical 
section at all locations along the perimeter of the bank. 
The characteristic along-shore dimension, L, is defined 
as the length of the flat plateau along the coast. 

h = ho 0<y < D 

cos2n(y - - D)/2D D<y<2D 

h = 0 y>2D 

Figure 1.  Perspective view of the bank. The forcing flow 
is parallel to the main bank direction. 

The canyon. In this case, we consider a homogeneous 
fluid which flows over an infinite length shelf break, the 
height of which is given by 

h — ho 

A canyon is present in this shelf break, the horizontal 
shape of which is also given by a cos2 profile. 

In both situations, an oscillatory current is flowing in 
the direction parallel to the coast and is defined by 

U = U\ ■ sin(uit), 

where U\ and w are the amplitude (uniform in space) 
and the frequency of the current. The mean forcing 
velocity during one-half cycle of the flow oscillation 

Hi = 2/TTI/I 

is taken to be the characteristic velocity scale. The 
width scale of the shelf break, D, is chosen as the char- 
acteristic lateral length scale. 

It is convenient to characterize the system by the 
following non-dimensional parameters: 

Ro = Ui/fD, 

Rot = o>/f, 
Eh = Ah/fD

2,    Ev-- = Av/fH
2 

Fr = f2D*/gH; 

i.e. respectively the (spatial) Rossby number, the tem- 
poral Rossby number, the horizontal and vertical Ek- 
man numbers and the Froude number. There also geo- 
metrical non-dimensional parameters such as the aspect 
ratios H/D, h0/D and L/D. Ah and Av are assumed to 
be constant eddy viscosity coefficients in the horizontal 

Ü 

Figure 2. Perspective view of the canyon. The forcing flow 
is parallel to the main shelf break direction. 

and vertical dimensions, respectively. In the laboratory, 
Ah and Av are taken to be as the kinematic viscosity 
v and g is the gravitational acceleration. Note that the 
Reynolds number can be expressed from the previous 
numbers as Re = UiD/Ah = Ro/Eh. It is also conve- 
nient to define X as the normalized distance travelled 
by an undisturbed fluid parcel in one-half of a flow cycle 

X = idh/uD = itRo/Rot 

The laboratory experiments 

The laboratory experiments were carried out on the 
large rotating table at the Institut de Mecanique de 
Grenoble. This 14 m diameter rotating platform is 
equipped with a 13 m diameter, 1.2 m deep cylindri- 
cal tank. For the purposes of laboratory convenience, 
the configurations of Figures 1 and 2 must be adapted 
to a circular geometry. The obstacle is placed along the 
wall. Its shape is defined by (1) with D = lm, L = 5m 
and h = 0.3 m. The tank is filled with fresh water, the 
total fluid depth of which is H = 0.35 m. The back- 
ground flow is established by oscillating the platform 
with an angular rotation Q given by 

Cl = Ho + Hi ■ sin(cjt) 

with fi0 = 0.125 s_1 and fii < fio- Such a system is 
dynamically equivalent to a current fluctuating over a 
fixed bottom. 

Because fii -C ^o the Coriolis parameter / can be 
considered as constant and equal to / = 0.25 s_1. The 
inertial period is therefore 25 s and the background ro- 
tation period 2-ix/Qo is 50 s. Thus we are simulating an 
oscillatory movement parallel to a coast. The tangential 
velocity at r = 6 m is chosen as the reference velocity, 
U\ — fiir, and then used to define the mean forcing 
velocity Ui. The geometrical parameters and the Ek- 
man number are constant in the experiments. The only 
varied parameters are thus Ro and Rot. 

In the laboratory, the topographic slope may be ex- 
aggerated because H/D is not a similarity parameter. 
The Froude number, Fr, is such that Fr < 1 support- 
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ing the assumption that external gravity waves do not 
primarily affect the situation under investigation. The 
Ekman numbers are small and thus viscous effects in 
the fluid interior, including the shelf slope region, are 
small away from the lateral boundaries. As discussed 
by Pedlosky [1979], a scale for the relative thickness of 
the vertical Ekman layer is given by 

8V/H = El'2 

Regarding the effect of the side-wall, the same author 
proposes a scale for the lateral boundary layer thickness 
(Stewartson layer) as 

Sh/D = E\!2IElJA 

As estimated from the above relations, the side-wall 
boundary layer is expected to be significantly larger 
than its bottom counterpart; i.e. Sv -C Sh- It is clear, 
however, that in the vicinity of the coastline, the bot- 
tom Ekman layer will influence the nature of the flow 
in that region. 

The velocities in the tank were measured at six loca- 
tions (y = 0.25, 0.5, 0.65, 0.75, 0.85 and 1.1 m) along 
three radii, at x = —1.5, 0 and 1.5 m, at z = -2.5 cm 
below the free surface. Vertical velocity profiles were 
also determined for three experimental conditions. The 
velocities were measured by ultra-sonic current meters. 
In addition, we recorded the trajectories of surface floats 
and used image processing to obtain an overall view of 
the characteristic flow patterns. Dye tracers were also 
used to visualize the fluid movements and check the 
general behavior recorded by the current meters and 
the floats. 

The numerical model 

The numerical model used is the tri-dimensional prim- 
itive equation model introduced by Haidvogel et al. 
[1991] written in its channel configuration version. This 
model is based on the standard Navier-Stokes equations 
for a rotating fluid in which the hydrostatic, Boussinesq 
and incompressibility approximations have been made. 
In addition, the rigid lid approximation is assumed for 
filtering external gravity waves. This saves substantial 
amounts of computing time by permitting larger time 
steps. This approximation is justified by the smallness 
of the Proude number, Fr, as noted above. Note that 
while the rigid lid approximation does not allow the free 
surface to slope, it can nevertheless accommodate pres- 
sure gradients, thus simulating a free-surface slope, in 
particular cross-stream. 

The model system is configured in a channel ge- 
ometry where Lx and Ly are respectively the chan- 
nel length and width. Periodic boundary conditions 
are applied in the longitudinal direction of the chan- 
nel. No-slip numerical boundary conditions are applied 
along the wall next to the bank. For simplicity, a slip 
condition is assumed on the opposite wall which, in 

any case, has negligible influence on the flow over the 
bank. Note that keeping the slip boundary condition on 
the opposite wall avoids grid refinement in that region 
and the associated increase in computational cost. In 
the canyon case, the slip boundary condition was im- 
plemented for both channel walls. The possible large 
downstream extent of the rectified flow induced by the 
canyon has obliged us to implement a buffer zone at the 
downstream part of the the channel in order to damp 
flow perturbations. In the buffer zone, the lateral fric- 
tion is progressively increased to 10 times the actual 
fluid viscosity. For this same reason the channel length 
has also been significantly extended with regard to the 
bank case. 

The ability of the Haidvogel et al. [1991] model to 
handle a variable grid was used to refine resolution 
where needed. It is indeed useful to solve for the non- 
linear interactions more precisely in regions where they 
are expected to be more active. This is the case over 
the steepest shelf break gradients and along the vertical 
wall next to the obstacle in the bank case. 

The lateral viscosity coefficient Ah was chosen as 
1.3 x 10~4ra2/s leading to a horizontal "numerical" Ek- 
man number of Eh = Ah/fD

2 = 5.3 x 10"4. This 
choice results from a compromise between having the 
finest possible grid resolution (and the related small- 
est possible lateral viscosity required for numerical sta- 
bility) and conserving computational capabilities. The 
number above, while significantly larger than the typi- 
cal Ekman number for the laboratory, is considered as 
an acceptable order of magnitude for the ocean [Ped- 
losky, 1979]. Since we assume no bottom friction and 
no vertical friction in the fluid interior, the vertical eddy 
viscosity coefficient, Av, is zero. 

The numerical model employed a channel domain 
with limited streamwise and crossstream extent. The 
channel dimensions were chosen in order that neither 
the opposite wall nor the channel extremities signifi- 
cantly influenced the flow in the regions of interest. 

The parameters used, apart from viscosity, are iden- 
tical to the ones in the laboratory experiments: H = 
0.35 m, h0 = 0.30 m and / = 0.25 s_1. The length 
of the bank is L = 5 m and the one of the canyon 
L=lm. The width of the bank is such asfl = lm 
and for the canyon D = 0.5 m. For the bank, we choose 
Lx = 20 m. A width of Ly = 4 m was found to be 
sufficient to ensure that the "deep ocean" side wall did 
not perturb the flow in the vicinity of the topographic 
feature. For the canyon, we choose Lx = 15 m and 
Ly — 4 m. 



RECTIFIED FLOWS OVER A SHELF BREAK 211 

0.4 

0.2 

-0.2  — 

U/Ui Run #3 
RO{ = 0.8 

r\ I   * V 
* * 

i   i   i   i ,        ,        ,        ,'/D 

0 0.5        1 1.5       2 2.5       3 3.5       4 4.5 

1.2 

1.0 — 

U/U1 
Run #10 
Rot = 0.8 

^_l I L I        I        I 
y/D 

0.5        1 1.5        2 2.5        3 3.5       4 4.5 

b 

U/Ui Run #14 
Rot = 0.22 

J I L 
y/D 

3.5 4.5 

Figure 3. Typical velocity profiles U /U\ in the mid- 
section. Runs # 3 (a), # 10 (b), # 1 (c) and # 14 (d). 
Computed values are shown by a solid line, laboratory mea- 
surements are indicated by stars. 

The Bank Case 

Fifteen experiments were performed, the conditions 
of which are indicated in Table 1. 

In analyzing the results, attention was directed mainly 
to characterizing the flow based on the general nature of 
the rectified currents. Comparisons between the labora- 
tory flows and the numerical computations were made 
for all the 15 experiments. 

It was found convenient first to define the various 
characteristic flows in terms of the mid-section pro- 
files of the streamwise rectified velocity component near 
the free surface. Figures 3a-d show some examples for 
Runs # 3, 10, 1 and 14, respectively. These plots 
present the computed (solid line) and measured (stars) 
u-components of the normalized residual current U/ill 
along the mid-section (x = 0), at z = 2.5 cm below 
the free surface. The scale is identical for all graphs. 
We note that, for the most part, there is good qualita- 
tive agreement between the numerical results and the 
laboratory experiments. It was observed that the di- 
mensional rectified velocities measured in the labora- 
tory may be very small; in Run # 3 for example, the 
maximum velocity is 1.6 mms-1. The following typical 
flow regimes were defined after examining the various 
profiles: 
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• A "tips" flow regime. This flow is characterized 
by (i) a broad rectified flow U jU\ < 0(1) towards 
positive-re over the shelf and slope region (i.e. 0 < 
y/D < 1) and (ii) a weak flow toward negative-a; 
for y/D > 1, see Figures 3a, b. 

• A "bank" flow regime. This flow is characterized 
by (i) a rectified current toward negative-x over 
the plateau, (ii) a current toward positive-x near 
the slope and over the near deep ocean region and 
(iii) a weak negative-a; flow for y/D > 1.5, see 
Figure 3d. 

• A transitional flow regime in which the flow is 
characterized along y/D = 0 by (i) a narrow recti- 
fied current toward positive-x along the coast, (ii) 
a narrow current toward negative-x on the plateau 
to the left of the shelf break, (iii) a strong flow to- 
ward positive-a: over the slope region and (iv) a 
weak negative-a; flow for y/D > 1, see Figure 3c. 
Along y/D = 1.5, the profile is the same as that 
along y/D = 0 for the bank flow regime, and along 
y/D = —1.5 it is the same as that corresponding 
to y/D = 0 for the tips flow regime. 

Figures 4 a-b are typical plots of the model, horizon- 
tal, rectified velocity field for the tips and bank flow 
regimes, respectively.    Figure 4a for the tips regime 

u, T" 

i<jM# 

Figure 4. Examples of model horizontal velocity fields in 
typical tips (Run #6) and bank (Run #13) flow regimes. 
(The actual computational domain is larger than the ones 
focused on here). 

(Run # 6) shows that the rectified flow for the major 
portion of the ridge is uni-directional towards positive- 
x, while strong anticyclonic eddy structures are located 
over the tips of the topography. In Figure 4b for the 
bank flow regime (Run # 13), on the other hand, the 

rectified flow shows a strong anticyclonic cell over the 
plateau and slope region, with cyclonic and anticyclonic 
eddy structures above the left and right tips of the to- 
pography respectively. 

The vertical structure of the flow was assessed in the 
laboratory by measuring the time-dependent horizontal 
velocity as a function of depth at selected locations. The 
principal conclusion is that the rectified flow, within ex- 
perimental error, is roughly independent of height. This 
also validates the model approximation of a homoge- 
neous vertical structure. 

First and foremost we found that, considering the 
complexity of the physical system addressed and the 
simplifications used in the numerical model, there is 
fairly good agreement between the laboratory and nu- 
merical experiments. 

The study raises the consideration of the origin of 
the rectified current. The possible mechanisms for flow 
rectification are the effect of the bathymetric variation 
and the frictional effects. It will be recalled that bot- 
tom friction was neglected in the numerical model and 
thus that frictional effects enter the numerics only by 
lateral friction. The good agreement between the labo- 
ratory and numerical experiments suggest that bottom 
friction is thus proven not to be an essential ingredient 
of the rectification process observed in the laboratory. 
Moreover, scaling arguments led us to hypothesize that 
lateral friction is also not of leading order importance 
away from the wall. Bathymetric variation alone would 
thus appear to be the main causal factor for the ob- 
served rectified currents. Thus, in a similar way as in 
Boyer et al. [1991], the production of relative vorticity 
induced by bathymetric change may account for most 
of the rectified current. 

It is of particular interest to look at the maximum 
values of the rectified current in the different cases with 
respect to the non-dimensional controlling parameters. 
Figure 5a shows a plot of the normalized maximum rec- 
tified current in the positive-x direction Umax/U-[ as a 
function of RojT1 for both the laboratory and the numer- 
ical experiments. Again good agreement is seen between 
the laboratory and the numerical results, although the 
latter are often larger. The data in Figure 5a from this 
limited experimental program strongly suggest that the 
principal parameter determining the qualitative nature 
of the resulting flow fields is the temporal Rossby num- 
ber, Rot. Some of the data scatter is due to the fact 
that the observable Umax/Ui is also a function of_Ro. 
Interestingly, it appears that the quantity Uma.x/Ui is 
maximum when flof1 « 1.7, i.e. when the forcing pe- 
riod is approximately twice the inertial period.     

Figure 5b presents the same quantity Umax/Ui as 
a function of X, the normalized flow excursion during 
one half of the oscillatory cycle. The data collapse is 
similar to that of Figure 5a. Because X ~ Ro/Rot 

this reinforces the fact that Ro is playing a limited role 
and provides additional support for the idea that the 
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principal governing parameter is Ro^1. Figure 5b also 
reveals that the rectified velocity maximum occurs for 
X « 0.5, i.e., when the flow excursion approximates the 
width of the slope region. 

Two different types of behavior can further be iden- 
tified on Figures 5a and 5b: (i) a range for which the 
rectified velocity increases approximately linearly with 
Ro-1 and X (0 < Ro^1 < 2; 0 < X < 0.5) and (ii) 
a range in which the velocity decreases with Ro^1 and 
X (Ro^1 > 2; X > 0.5). Within the range of parame- 
ters being investigated, the maximum velocity reached 
in the mid-section is about 1.5 U\, which is approxi- 
mately equal to it/2 ■ U\ = U\. No rectified flows ex- 
ceeding U\ were found in any of the experiments at any 
location. The maximum amplitude of the rectified flow 
seems therefore constrained in all cases by U < U^, i.e., 
by the maximum amplitude of the incident forcing flow. 
Note that this maximum value is reached approximately 
at the transition point between the tips and bank flow 
regimes. 

Using all these results it was possible to classify the 
experiments of Table 1 according to the previous general 
definitions and to draw a flow regime diagram in (Rot, 
Ro) parameter space (Figure 6). The respective run 
numbers are also indicated with reference to Table 1. 
This diagram clearly shows the dominance of Rot in 
determining flow regimes. 

Figure 7 summarizes the_way inwhich maximum nor- 
malized rectified velocity Uma.K/Ui in the mid-section 
x = 0, varies in {Ro, Rot) parameter space. As in Fig- 
ure 5a, it shows that the rectified flow amplitude has 
a maximum for Rot « 0.5, i.e., when the forcing flow 
oscillation is twice the inertial period. 

A number of remarks may usefully be made about 
the so-called tips and bank flow regimes. As stated ear- 
lier, for the largest values of Rot, we observe the tips 
flow regime in which the rectified flow in the mid-bank 
portion is very weak. This is consistent with previous 
studies showing that rectification does not occur in the 
along-shore direction for an along-shore oscillatory cur- 
rent along a coastline of uniform cross-section. In the 
absence of other mechanisms, such as non-linear bottom 
friction, an infinite length obstacle like this will not give 
rise to any rectification [Haidvogel and Brink, 1986]. 
This result was checked numerically in the present case 
by extending the obstacle length L to infinity. This can 
also be seen simply as a consequence of simple analyti- 
cal considerations (see e.g. Verron et al, 1994), which 
suggest no rectification from an oscillatory flow parallel 
to the bank slope. 

The basic rectification processes over the bank could 
therefore be interpreted as follows. The longitudi- 
nal variations of the transverse bathymetric gradients 
where they exist (tips) initiate local rectification (U.S7H 
^ 0) and, where they are absent (mid-bank slope) local 
rectification is also lacking (U.VH = 0). Thus, when 
the flow excursion is at the scale of the tips (X ~ D), 
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Figure 7.   Maximum rectified velocity in the mid-section 
in the (Ro, Rot) parameter space. 

rectification stays confined to the tips and remains weak 
at mid-bank. For such cases, the tips flow regime is ob- 
served. When the flow excursion is at the scale of the 
characteristic streamwise length of the bank (X ~ L), 
the rectifying effects of the tips are sufficient for the 
whole bank to be taken over. The bank flow regime is 
then observed. In a word, one could say that longshore 
rectified currents are present only because the bank has 
tips. 

This study indicates the importance of along-shore 
variations in the shelf break geometry. It suggests that 
off-shore canyons and ridges will strongly affect the rec- 
tification patterns resulting from along-shore oscillatory 
currents and motivates the second part of this investi- 
gation over a simplified canyon feature. 

The Canyon Case 

We have investigated 16 situations corresponding to 
the sets of controlling parameters indicated in Table 2. 

Figures 8a and 8b show typical situations observed 
in the study. For each figure, the mean streamfunction 
and vorticity patterns are shown as well as the mean ve- 
locity vectors pattern. A general description of the flow 
pattern can be made looking at the velocity vectors and 
is globally valid for all cases: a rectified flow is generated 
along the longitudinal direction of the shelf break. This 

Case Ro Rot X 
1 0.05 0.25 0.628 
2 0.10 0.25 1.257 
3 0.15 0.25 1.885 
4 0.20 0.25 2.513 
5 0.05 0.50 0.314 
6 0.10 0.50 0.628 
7 0.15 0.50 0.942 
8 0.20 0.50 1.257 
9 0.05 0.75 0.209 
10 0.10 0.75 0.419 
11 0.15 0.75 0.628 
12 0.20 0.75 0.838 
13 0.05 1.00 0.157 
14 0.10 1.00 0.314 
15 0.15 1.00 0.471 
16 0.20 1.00 0.628 

Table 2. Dimensionless parameters for the various numer- 
ical experiments over the canyon. 

rectified flow has a mean direction meandering over the 
canyon area, first towards the abysses, then towards the 
shelf, then back to the abysses, to finally stay more or 
less rectilinear, parallel to the shelf break and mostly 
confined at the upper part of the break. The current 
meandering over the canyon is more or less in spatial 
phase with the canyon structure. The intensity of the 
rectified flow is strongly dependent on the flow param- 
eters. The mean flow meandering pattern corresponds 
to a succession of alternating eddies, positive, negative 
and positive, over the canyon region. The intensities of 
these eddies and their precise positions with regard to 
the canyon are a function of the flow parameters. 

The most noticeable dynamical feature in many sit- 
uations is the existence of a downstream mean current 
along the shelf break which can radiate in some cases 
far from the canyon area. Figure 9 presents one exam- 
ple of the section of the rectified current velocity one 
meter downstream the middle of the canyon. The ve- 
locity profile in all cases is very much centered at the 
top part of the shelf break, i.e. at the location where the 
topographic height is decreasing. This profile is rather 
sharp. An horizontal width scale based on the e-folding 
factor would be something like the canyon scale D. It 
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Figure 9. Example of mean rectified velocity transversal 
profile at a distance of one m downstream of the middle of 
the canyon for Run # 3. 
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Figure 8. Examples of mean rectified streamfunction, vor- 
ticity and velocity fields over the canyon for Run # 16 (a) 
and Run # 3 (b). 

is also noted that a small transverse asymmetry in the 
velocity profile is observed with the increase of Rot- 

It is possible in particular to analyse the variation 
of the rectified current maximum velocity induced over 
the canyon (sections performed right in the middle of 
the canyon) and one meter downstream. The results 
are shown in Figures 10a and 10b, respectively, as a 
function of Ro^1. The data scatter with regard to Rot 

is relatively large which would show that Rot is not as 
clearly the leading parameter for the rectified flow am- 
plitude as in the bank problem. Things must however 
be said cautiously. Indeed, data scatter is most impor- 
tant in the case of the mid-canyon rectified flow rather 
than in the case of the downstream rectified flow. The 
mean flow pattern within the canyon is rather complex 
and the averaging procedure may have residuals due to 
insufficient convergence. Conversely, the flow pattern 
downstream has a more stable configuration and may 
be of greater interest. The downstream maximum flow 
amplitude is more satisfactorily described in terms of 
the parameter Rot although some noticeable impact of 
Ro is visible. 

With regard to the control parameter Ro, Figure 11 
shows that the velocity maximum amplitude for the 
downstream flow reveals two main things: (i) there are 
clearly two main regimes of rectified flow intensities, a 
"slow" downstream rectified flow for the largest values 
of Rot (Rot = 0.75 and 1.00) and a "fast" downstream 
rectified flow for the smallest values of Rot (Rot — 0.25 
and 0.50), (ii) for the "slow" regimes, the velocity am- 
plitude increases with Ro while, for the " fast" regimes, 
the velocity amplitude roughly decreases with Ro. Note 
that, similar to the bank case, the rectified flow inten- 
sity can be as large as the forcing. By looking at all of 
the data obtained, it is tempting to say that, similar to 
the bank problem, there are two rectified flow regimes 
over the canyon: 

• a "local" regime in which the rectified flow is 
roughly confined to the canyon area without re- 
ally affecting neighbouring regions (analogous to 
the "tips" regime), 
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Figure 10. Maximum rectified velocity as a function of 
the temporal Rossby number Rot at a distance of oneone 
m downstream of the middle of the canyon (a) and at mid- 
canyon (b). 
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Figure 11. Maximum rectified velocity as a function of the 
Rossby number Ro at a distance of one one m downstream 
of the middle of the canyon. 

• a "non-local" regime in which the rectified flow 
due to the canyon extends away from the origi- 
nating area (analogous to the "bank" regime). 

This non-local regime is clearly of much interest since 
it would indicate that a canyon of limited geographical 
extent may have influence at large distances. Figure 
12 focusses more information on this point by plotting 
the approximate length of penetration of the rectified 
flow pattern (non-dimensionalized by D) in the con- 
trolling parameter space. This penetration length, LP, 
is measured from the middle axis of the canyon and 
is estimated approximately from the mean streamfunc- 
tion/vorticity pictures for all cases. The larger Rot (and 
smaller Ro) correspond to the smallest values of LP/D, 
i.e. to the "local" regime. One must be cautious when 
considering the largest LP/D since the "buffer zone" 
employed in the model for treating the open bound- 
ary condition problem as already mentioned, may spu- 
riously damp the downstream penetration at large dis- 
tances. 

Conclusions 

Firstly, the interaction between an along-shore oscil- 
latory current and an elongated bank placed along a 
vertical wall was investigated by means of laboratory 
and numerical experiments. The main conclusions fo- 
cus on the intense rectified currents which are observed 
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Figure 12. Approximate length of penetration for the rec- 
tified mean current over the canyon in the (Ro, Rot) pa- 
rameter space. 

over the bank and along the coast. These rectified cur- 
rents are mainly controlled by the topographic influ- 
ences of the tips; i.e. by the most significant longitudi- 
nal variations of the transverse topographic gradients. 
The study has demonstrated the crucial role of the tem- 
poral Rossby number in determining the general nature 
of the characteristic flow patterns. For large Rot, one 
observes the tips regime in which the rectified flow over 
the mid-bank is unidirectional, but relatively weak. For 
small Rot, one obtains a relatively strong anticyclonic 
rectified flow pattern over the entire topographic fea- 
ture, i.e., the flow near the mid-bank has the coastline 
on the right over the shelf break, but reverses in direc- 
tion near the coast. 

Secondly, the interactions between an along-shore os- 
cillatory current and a canyon in an otherwise long shelf 
break of constant cross section was investigated by nu- 
merical simulations. The main conclusion focuses on 
the possible large, downstream (i.e. with the shallow 
fluid on the right), range of action that the canyon 
may have in terms of rectification. The horizontal scale 

associated with the rectified mean current penetration 
may for example be typically of one order of magni- 
tude larger than the horizontal scale of the canyon it- 
self. This may have important physical consequences 
as it shows that through the process of rectification, a 
simple canyon topographical irregularity may have large 
distance effects. Two flow regimes were observed which 
have strong similarities with the "tips" and "bank" 
regimes. The controlling parameter is mainly Rot as 
it was also in the case of the bank. But the influence of 
Ro is, however, more clearly sensitive here. As in the 
bank case, the intensity of the rectified current may be 
of the order of the amplitude of the forcing current. A 
tidal forcing velocity may for example generate a mean 
rectified current of the same velocity amplitude. 

The complex role of bottom boundary layers has not 
been investigated (and lateral boundary for the bank 
situation) and is therefore not well-understood at this 

time. The good agreement between the laboratory ex- 
periments and the numerical model in the first part of 
the present study, however, suggests that the present 
model is dominated by topographic effects and thus 
captures most of the physics involved in the rectifi- 
cation process. The present study has also neglected 
stratification effects which should be considered to be 
important in most oceanic applications. Although the 
present models are crude representations of real flows, it 
is suggested that the basic mechanisms leading to flow 
rectification are representative of physical mechanisms 
at work in nature. 
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Abstract. Systematic form stress forces can drive mean currents of observable magnitude in the coastal ocean; 
however, the resulting mean momentum balances are non-linear and solutions, even to simplified form stress 
problems, must be obtained numerically. Here we ask: what time-mean circulation patterns are produced by an 
oscillatory wind stress in a coastal ocean featuring a steep coastal canyon intersecting an otherwise smoothly 
varying continental shelf/slope? Five coastal models of differing algorithmic design are asked to provide answers 
to this question. If the coastal ocean is homogeneous, the five models give qualitatively similar results—i.e., 
residual circulation in the sense of intrinsic shelf wave propagation; however, the results are in quantitative 
disagreement by almost an order of magnitude. If the coastal ocean is stratified, the models are also in qualitative 
disagreement. Two factors which appear related to these disparities are model vertical coordinate and 
subgridscale parameterization. 

Introduction 

Both simplified numerical process studies and 
statistical mechanical considerations suggest that 
topographic form stress may contribute significantly to the 
maintenance of the observed time-mean circulations on 
and near continental shelves (Haidvogel and Brink, 1986; 
Holloway et al., 1989). Here we explore the effects of 
form stress in a topographically irregular coastal channel 
driven by a time-varying, along-channel wind stress. The 
topographic irregularity is provided by a steep, cross-shelf 
canyon, superimposed on a smooth continental shelf/slope 
profile. 

Because non-linearity is important, solutions to the 
form stress problem are sought numerically using several 
readily available coastal models. The models include at 
least one drawn from each vertical coordinate model class 
(z, sigma, isopycnal). Both low- and high-order numerical 
algorithms are represented among those tested. The 
models include the well-known Geophysical Fluid 
Dynamics Laboratory Modular Ocean Model (GFDLM; 
Bryan, 1969; Cox, 1984), the Miami Isopycnic Coordinate 
Ocean Model (MICOM; Bleck et al., 1992), the Princeton 
Ocean Model (POM; Blumberg and Mellor, 1987), the 
Spectral Element Model of Iskandarani and colleagues 
(SEM; Iskandarani et al., 1995), and the SPEM model 
(Haidvogel et al., 1991; Hedstrom, 1994). 

A schematic diagram of the experimental configuration 
is shown in Figure 1. The geometry is annular, that is, a 
coastal channel periodic in the x direction, bounded by 
two (inshore and offshore) walls. The channel dimensions 
are Lx = 128 x Ly = 96 km. The topography is a 
continental shelf increasing in depth with cross channel 
distance intersected by an isolated and idealized canyon: 

with 

Hx,y) = Hmi+-(Hma-Hmin) 

•(l + tanh(y-K/L)) 

74 
Y=Yn-Lsm   (nx/L) 

and Hmin = 20 m, H^ = 4000 m, Y0 = 32 km, Ls = 10 
km, and Lc = 16 km. The resulting topography is both tall 
(20 m to 4000 m) and steep (maximum slope 30%). 

The circulation in the coastal channel is driven by an 
along-shore wind stress, applied as a body force acting 
uniformly over the water column: 

xx =To-(l-tanh«y — L )/LJ) 
2 2 

Figure 1. Schematic diagram of the coastal canyon. 
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with a periodically varying amplitude of 

xo=10"4sin(27tf/7;)    Pakg'V 

with Ly, = 10 km and Tw =10 days. Common to all 
experiments are the constant rate of rotation / = 1T0~ 
m s-1, the gravitational constant g = 9.81 m s"2, and a linear 
bottom stress coefficient rB = 3 10"4m s"1. (Bottom stress 
is also taken to act uniformly with depth.) Initialized from 
rest, all runs are carried out to day 120; the last 30 days 
(90 < t < 120 days) are averaged to give time-mean fields. 
Integrations of longer duration (out to day 500) produce 
slight changes in the time-mean currents; however, the 
changes are small compared to the differences among 
individual sets of model results. 

Results 
The time-mean momentum balance in this fluid system 

is expected to be intrinsically non-linear (Haidvogel and 
Brink, 1986). This, together with the deterministic, yet 
nonetheless complicated, topographic profile, precludes a 
simple analytic solution. Despite the absence of a known 
analytical solution, however, we can intercompare the 
model solutions and assess model-to-model differences. 
Three bulk measures of model output are discussed here: 
the  maximum  pointwise residual   (time-mean)  current 

speed at the surface (maximum of |v(z = 0)| ), the 

maximum residual along-channel averaged current 
(maximum of uxt), and the net residual transport through 

the channel (across-channel integral of huxt. These bulk 
measures are reported for each model in Table 1. 

Since the problem as posed is homogeneous, and 
forced and damped in a depth-independent manner, the 

flow is expected to remain depth-independent. In 
principle, therefore, only a single degree of freedom is 
necessary to represent the vertical structure. Of the models 
appearing in Table 1, all but one can accommodate the 
geometry of the coastal channel with a single (or at most a 
small number of) vertical degrees of freedom. Both the 
isopycnal and terrain-following models (MICOM, POM, 
SEM and SPEM) have this capability. The remaining 
model (GFDLM), being z-coordinate, must represent the 
irregular topography as a number of steps. Table 1 shows 
GFDLM results for a total of 10, 20, and 40 levels. 

All models require a finite value of lateral viscosity in 
order to produce smooth, stable results. To insure 
maximum intercomparability, three of the models 
(MICOM, SEM and SPEM) have been run with identical 
sub-gridscale closures (harmonic viscous operators with a 
constant lateral viscosity coefficient of 5 m2/s). (Lower 
values of viscosity produce noisy results in all models.) 
The GFDLM results were also obtained using a harmonic 
closure; however, a higher value of viscosity (15 m/s) 
was required for stability. The POM model employed a 
Smagorinsky formulation (adjustable constant = 0.2). 
Accompanying these finite values of lateral viscosity, the 
models are required to impose a lateral boundary 
condition on horizontal velocity. Since free-slip (no 
lateral stress) boundary conditions are troublesome to 
implement on the B-grid GFDLM code, a mixture of free- 
and no-slip experiments were carried out. 

The time step values used in the models (Table 1) 
roughly reflect the CFL constraints on each. The free sea 
surface models, with their explicit treatment of surface 
gravity waves, require quite short time steps, while the 
two rigid lid models can be run with time step increases of 
two orders of magnitude. 

Table 1. Model intercomparison for the homogeneous form stress experiment. 

Model vertical 

deg. of 

lateral 

viscosity 

time step lateral 

boundary 

max. max. 
-xt u 

net 

transp. |v(z = 0)|' comments 

freedom [m2/s] [s] condition [cm/s] [cm/s] [Sv] 

GFDLM 40 15 432 no   slip 6.7 1.7 0.060 

20 15 432 no   slip 6.9 1.9 0.096 

10 15 432 no   slip 6.0 1.4 0.068 

MICOM 1 5 2 free slip 14.6 3.4 0.231 

1 5 2 no   slip 20.3 1.4 0.142 

POM 5   30 free slip 4.6 2.0 0.050 0.2 SM 

SEM 1 5 1 free slip 14.6 4.1 0.309 

1 5 1 no   slip 8.7 2.5 0.404 

1 
1 
2 

free slip 16.9 4.2 0.305 \Ax 

1 1 
1 
2 

free slip 19.0 4.3 0.231 
1 
2 

SPEM 2 5 864 free slip 12.0 3.8 0.250 

2 5 864 no   slip 10.7 3.20 0.240 
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Reassuringly, all five models produce residual 
circulations with the expected overall character—that is, 
time-mean currents in the sense of intrinsic shelf wave 
propagation. (We will refer to this direction as 
"prograde.") Figure 2 shows the resulting curves of uxl as 
a function of cross-shelf distance for five simulations 
taken from Table 1. All models produce a band of strong 
prograde residual flow at approximately 10 km offshore. 
Two of the models (GFDLM and POM) have weak mean 
retrograde flow further offshore. Residual current vectors 
(Fig. 3) are largely similar across model classes; slight 
differences occur in the extent of the recirculation 
upstream of the canyon (e.g., compare POM and 
MICOM) and the smoothness of the mean vectors. Note 
that even with elevated levels of lateral smoothing, 
GFDLM produces the least smooth of the time-mean 
currents. 

Despite varying degrees of qualitative agreement, the 
model results differ quantitatively by significant amounts. 
Maximum pointwise time-mean current speeds vary by a 
factor of four, and residual transports by a factor of six. 
The weakest currents and lowest overall transports are 

IB 20 90 100 30 "10 50 60 70 

cross-shelf distance (km) 
Figure 2. Time- and along-shore mean current ü" as a function 
of cross-shelf distance. 

returned by the GFDLM and POM codes. This is likely 
related in part to the use of a higher value of lateral 
viscosity in GFDLM and to the Smagorinsky formulation 
in POM. (Both of these codes produce offshore retrograde 
flow, which also reduces transport.) Among the free-slip 
experiments, the strongest pointwise residual currents and 
along-shore transports are found in SEM. Given its high- 
order formulation, it is tempting to attribute the enhanced 
strength of the SEM circulation to reduced implicit 
algorithmic smoothing. Increased horizontal resolution 
does not result in large changes in any of these model 
diagnostics, suggesting adequate resolution of all but the 
inner viscous layer along the coastal wall. Note that the z- 
coordinate model achieves its highest residual currents 
with an intermediate number of vertical levels (N=20); 
increased vertical resolution actually reduces the time- 

mean    circulation.    This    may    indicate    incomplete 
convergence, even with 40 vertical levels. 

As might be expected, the introduction of stratification 
increases model/model differences. Figure 4 (time-mean 
velocity vectors at a depth of 100 m) shows the outcome 
of adding a representative vertical stratification to four of 
the model runs. (Vertical resolution is also increased in 
each.) This stratified experiment uses a single state 
variable (density), expressed as a constant (Boussinesq) 
density (p0) and the initial resting distribution 

z!H„ 
pz =28.0-3.4880-c 

(        2 
1.0 — tanh(z/// ) 

V        3 j 

a - units 

with 

and 

//p = 800 

p„ = 1000 a - units. 

This choice results in a first baroclinic Rossby radius of 
deformation of 40 km in deepest part of the fluid. 

In addition, a vertical viscosity profile is prescribed as 

K„V(Z): 1010"4+9510"4 „z/ffv 

+95-10" .e-z+Hix.y),HVm2s-l 

with Hv= 50 m. 
The corresponding vertical viscosity is maximum at the 

top and bottom, and decays into the interior with an e- 
folding scale of Hv Finally, in the stratified experiment, 
surface and bottom stresses are incorporated as boundary 
conditions at the surface and bottom, respectively. 

With stratification, the maximum speed in GFDLM is 
2.5 cm/s; there is a broad prograde flow centered at the 
location of maximum topographic slope, with some 
intensification at the upstream flank of the canyon. A large 
anticyclonic feature dominates at the downstream flank of 
the canyon. The flow is much weaker than in the other 
models, in part because of the relatively large diffusivity 
needed for stability. In MICOM, the maximum velocity is 
6.3 cm/s; the main prograde current is only weakly 
influenced by the presence of the canyon. The additional 
circulation inside the canyon is driven by upwelling 
motion at the upstream flank and a boundary flow parallel 
to the depth contours at the downstream side. In contrast 
to the other models, POM produces a retrograde offshore 
mean flow, spatially separated from the prograde 
boundary circulation by a zone of weaker currents. Inside 
the canyon, the flow is enhanced and cyclonic with a 
maximum velocity of 7.2 cm/s. Lastly, in SPEM there is 
an intense boundary current following the depth contours 
in the canyon area (maximum current 11.7 cm/s), and a 
prograde off-shore flow that is deflected towards the 
canyon.   At   the   downstream   flank   of   the   canyon, 
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GFDLM 

MICOM 

JUi^* *   * 

SEM 

Figure 3. Time-mean surface current vectors for the homogeneous experiment. Maximum vector length is 15 cm s"1. Underlying isobaths 
are shown (200 m to 3800 m at an interval of 400 m). For clarity, only half of the computational domain is shown in each of the horizontal 
directions. 

pronounced boundary current separation occurs. 
Undoubtedly, these rather substantial differences reflect a 
complex interplay between the algorithmic and sub- 
gridscale parameterization choices made in each of these 
models. A more thorough discussion of these 
intercomparisons is given in Haidvogel and Beckmann 
(1995). 

Interpretation and Discussion 

With this single, simple set of intercomparisons, it is of 
course not possible to unambiguously sort out the 
respective roles of the many algorithmic differences 
among the five models employed here. Despite evidence 
for the impact of higher-order differences in the 
homogeneous experiment (e.g., SEM gives the strongest 
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POM 

MICOM SPEM 

Figure 4. Time-mean current vectors at a depth of 100 m for the stratified problem. Maximum vector length is 12 cm s"1 for all models 
except for GFDLM, where 2 cm s"1 has been used. Underlying isobaths are shown (200 m to 3800 m at an interval of 400 m). For clarity, 
only half of the computational domain is shown in each of the horizontal directions. 

residual flows), it seems to us that the primary factors 
involved in determining model differences on these 
problems are vertical coordinate and subgridscale 
parameterization. 

These two factors are sometimes linked. For example, 
the requirement for elevated levels of explicit smoothing 
in the GFDLM code is arguably related to the noise 
generated in these tests by the stepwise topography. 
Nonetheless, the precise form of the subgridscale operator 
is also related to our model results. The POM and SPEM 
models are rather similar in their algorithmic attributes, 
except for their use of different subgridscale closures. 
Even so, they produce rather different pictures of the time- 
mean flow, particularly in the stratified limit. 

The moral of the intercomparison, if any, is that simple 
numerical test problems such as these may have as much 
to tell us about our coastal ocean models as they have to 
say about the coastal ocean. 
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Shallow-Water Flow With Topography 
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Abstract. It was recognized recently that the interaction of the mesoscale eddy field with bottom topography 
of the the ocean does not only lead to the dissipation of large scale ocean currents, but may appear as a driving 
force that strongly affects the large scale circulation. A high resolution numerical model is employed to investigate 
the evolution of the turbulent eddy flow over topography. Our attention is focused on the extreme case, when the 
change of layer depth is comparable to its maximum value. Under these conditions the flow is primarily controlled 
by the vorticity dynamics, particularly by the stretching of vorticity lines and the tendency to conserve potential 
vorticity. Because the cross-isobatic motion of fluid particles causes changes of the relative vorticity comparable to 
the local Coriolis parameter, the flow is no longer in the geostrophic regime. The particular goal is to explore the 
mechanisms of large-scale rectified flow emerging from an initial random eddy field. Several numerical experiments 
with the barotropic shallow water model were performed with low dissipation and with idealized geometry and 

topography were performed. 

Introduction 

Rhines and Young (1982a,b) presented a quasi- 
geostrophic (QG) theory of the wind-driven circula- 
tion in the presence of bottom topography. This the- 
ory combines the ideas of topographic forcing of the 
fluid motion and of homogenization of the potential 
vorticity field by mesoscale eddy interaction. The to- 
pographic forcing results in the tendency that water 
parcels move along the contours of constant planetary 
potential vorticity, i.e., f/H lines, where / is the local 
Coriolis parameter and H is the depth. Earlier nu- 
merical experiments by Rhines (1975) investigate the 
development of geostrophic turbulence in a periodic 
domain in the presence of /3-effect and topography. 
It was found that the planetary /?-effect partially in- 
hibits the eddy merger process, restricting the maxi- 
mum scale to which the coherent structures may grow 
to (Rhines' rule) 

h   ■   — ß 
V< U2 > 

(1) 

where km[n is the minimum wavenumber associated 
with the streamfunction or the potential vorticity 
(PV) field, while \/< u2 > is the mean square velocity 
of the random field. 

A theoretical study by Carnevale and Frederiksen 
(1986) applies Arnold's criterion to the nonlinear sta- 
bility properties of QG flows over topography. It was 
shown that minimum enstrophy states have potential 
vorticity proportional to the streamfunction and are 

nonlinearly stable. 

In the spirit of the quasigeostrophic theory, the ef- 
fects of bottom topography were always treated as 
modification to the /J-effect, e.g., Salmon et al., 1976. 
This theory makes a qualitative distinction between 
regions where lines f/H = const intersect the bound- 
aries of the domain and regions of closed f/H con- 
tours. In the latter case the geostrophic flow is topo- 
graphically trapped and the potential vorticity tends 
to homogenize (Rhines and Young 1982b). A simi- 
lar effect was observed by Thompson (1993) in a nu- 
merical experiment with a QG eddy-resolving three- 
layer model, which shows the emerging of abyssal cy- 
clonic circulation in the region where f/H contours 

1 Author affiliation and corresponding address effective from May 1, 1995: Institute of Geophysics and Planetary Physics, University 
of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90024-1567 

2Formerly known as Mesoscale Air-Sea Interaction Group (MASIG) 
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are closed. 

On the other hand, coarse resolution numerical 
models used in climatological studies cannot simu- 
late the effect of the self-organization of the random 
eddy-field into large scale motion over topography. 
Holloway proposed to parametrize this subgrid scale 
effect by relaxing the velocity field to some nonrest 
final state, u„, i.e. the conventional dissipation in 
the right hand side of the momentum equations is 

replaced by terms like 

u - u* 
or       AA(u — u* (2) 

where r is a relaxation time and u* is some function 
of the bottom slope (Holloway 1986, Eby and Hol- 
loway 1994, Cummins and Holloway 1994, Holloway 
and Eby 1994, Alvarez et al. 1994). 

Several questions remain open. 

• The QG theory always assumes that the distur- 
bances of the bottom topography are small in com- 
parison with the characteristic depth. In reality, how- 
ever, the depth changes continuously from the deep 
ocean to coastal regions, where it is nearly zero. Con- 
sequently, the f/H contours are always closed. 

• As it was pointed out above, there is the expecta- 
tion that mesoscale eddy mixing drives the flow to the 
statistically equilibrium state predicted by the mini- 
mum enstrophy principle, but the particular dynam- 
ical mechanism of this process and its characteristic 
time scale remain unexplored. 

• It is also not clear how close real flows are to 
the equilibrium state and to what extent the existent 
models can simulate this effect directly or must rely 
on parametrizing it. 

In the present study we attempt to simulate the 
eddy-topography interaction in the simplest case, in 
the absence of wind forcing and with idealized geom- 
etry and topography. Most of the previous theoreti- 
cal studies are made within the QG framework, while 
their results were applied to primitive equation mod- 
els. We chose the barotropic shallow-water equations 
over finite amplitude bottom topography as the pro- 
totype system. This model is free of the restrictions 
typical for QG models. 

Barotropic Shallow-Water Equations 
With Bottom Topography 

Consider the barotropic one-layer shallow water 
equations with bottom topography, in Cartesian co- 

ordinates: 

dU + dPxx + 

dt        dx 
dV_ 

dt 

dPxv  ,  dP, 
dy dx 

dx 
dR 

dt 

+ yy 

dy 
dU     dV     n 

ir + ir = 0 
ox      dy 

'"=-*£ 
(3) 

where upper case U = pHu, V = pHv are the mass 
fluxes in x and y directions; lower case u and v are the 
velocities; H is the layer thickness; p is the density 
of the fluid; R = pH is vertically integrated mass 

content, or the two-dimensional density; p — pg(H - 
D) is the pressure field obtained from the hydrostatic 
equation, g is the acceleration of gravity, and D is 
the layer thickness at rest. Pxx, Pxy and Pyy are the 
components of the tensor of the momentum flux, and 
they are defined as follows: 

dx      dy 
,    ,du      dv. 

Pyy = Vv + AR(— - ^) 

1 
dx     dy 

°xy = Pyx = -(Uv + uV)- 

Ark,dv      du. 
-AR — + — 

dx      dy 
(4) 

where A is the horizontal friction coefficient. This 
definition of the momentum flux tensor is somewhat 
nonstandard because the pressure term has been ex- 
cluded. This is done for convenience because the pres- 
sure term will always be considered separately in the 
numerical discussion. The expression for the nonlin- 
ear term in the bottom line of eqns (4) looks redun- 
dant, because obviously Uv = uV = Ruv. However, 
as we will see soon, this equality will no longer be 
valid in the discrete case, if a staggered grid is used 
to discretize eqns (3). 

An Arakawa C—grid is used to discretize eqns (3). 
In our elementary stencil Vj,k is located half a grid 
interval to the south from Hjtk, and Ujtk is located half 
a grid interval to the east of the Hjtk point. 

(5) 

VJ,k + l Vj+i,k+i 

I 
Uj-i,k - Hjtk <-► 

1 
Uj,k - Hj + l,k 

Vj,k Vj + l,k 

T 
Uj-itk-i Hj,k-1 Uj,k-i 
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The grid intervals Ax and Ay are the distances 

between alike points, for instance, Uj>k and Uj+itk- 

The numerical model we use to solve eqns (3) is 
designed to minimize dissipation. It incorporates a 
fully implicit Crank-Nicholson time step with spatial 
discretization of the momentum equations in the flux 
form, similar to Lilly's (1965) scheme for the nonlinear 
terms. A backward Euler time step is used for the 
dissipation terms. 

Three features of the computational scheme are 
worth emphasizing: 

• Following Weiyan (1992), Schär and Smith (1993) 
we have applied the phenomenology of the two-dimensional 
compressible fluids to the shallow water hydrodynam- 
ics. Both the nonlinear and the dissipation terms in 
the momentum equations have the form of a diver- 
gence of a symmetric tensor. The discrete scheme we 
use retains this property. On the C-grid, the diag- 
onal elements Pxx and Pyy are defined at H-points, 
while the off-diagonal element Pxy is defined at vor- 
ticity points. After all of the elements of the stress 
tensor are computed, the second order centered finite 
difference approximation of the momentum equations 

is straightforward. 

It should be mentioned that the original Lilly 
scheme for the nonlinear terms conserves the mean ki- 
netic energy exactly. This property is based on a del- 
icate balance of the truncation errors of the approxi- 
mation of different terms and it restricts the choice of 
the possible discrete scheme for the nonlinear terms. 
In particular, in the i-momentum equation Pxy is 
approximated as Vxüy, while in ^momentum it is 
represented by Üyvx. Though both of these two ex- 
pressions approximate the same term with the second 
order of accuracy, they are exactly equivalent only if 
the layer thickness is uniform. In this case the scheme 
is equivalent to the discrete Arakawa Jacobian of the 
third kind, which conserves the mean vorticity exactly 
(Lilly 1965). The symmetric scheme we develop here 
produces more accurate conservation of the poten- 
tial vorticity for the case of nonuniform layer thick- 
ness, but it does not have the property of formal exact 
conservation of Kinetic energy. Consequences of this 
choice will be discussed later. 

• As an alternative to midpoint averaging (Lilly 
1965), an asymmetric three-point formula is used to 
interpolate the velocities and mass fluxes into H and 
vorticity points when computing the nonlinear terms 
of Pxx, Pyy and PXy respectively. The additional 
points are always taken from the upstream direction, 
so the following expressions are used to approximate 

U and V at H points (u and v similar): 

Üu = Uj_ik = 
3      2 >K 

_(aUjik + ßUj-lik + 1Uj-2,k,    if    UX>Q 

= {aVjl]e+i+ßVjik+yVj,k-1, if Vy>0 

~ \aVj>k + ßVjik+1 + yVjtk+2, if Vy < 0, 

and, at vorticity points, 

Ü" = Uik_i = 
J ,«       2 

_Uuj,k+ßUj,k-i+tUjib-2, if Vx>0 

~ \ aUjik-! + ßUj,k + 7tf;,fc+i» if V* < 0 

= \aVj+1,k + ßVjik + yVj.1,k, if Ü*>Q 

~ \ aVjtk + ßVj+1>k + 7^+2,*, if tjy < 0. 

(6) 

(7) 

To maintain second order of accuracy, coefficients 
a, ß, 7 in (6) and (7) must satisfy 

a + ß + j= 1, a - ß = 37 , 

and, therefore, there is only one free parameter among 

a, ß, 7. Let 

1 a      l      o 
a = - + 7, /? = 2 - 27 . 

and 7 is the adjustable parameter. 

Analysis of the truncation error shows that, for 
example, 

O rXx 
6 (Pxx) + siga(U){Ax) 

dx 

+ 

+(\+l) 

d3U       <9V 

dx3        dx3i 
dud2U     dU d2ui\ 

dx d2x      dx d2x\ f 
+0((Ax)3)   (8) 

where <$(...) is the usual centered difference operator. 
The first term in curly brackets may be interpreted as 
numerical dispersion in the nonlinear terms, while the 
second term corresponds to the numerical dissipation 
in the nonlinear terms. No choice of the upstream 
parameter 7 can eliminate both terms in curly brack- 
ets; however, we see that introduction of the upstream 
scheme may drastically reduce the truncation error in 
comparison with the original Lilly scheme with 7 = 0. 
In the present study we set 7 = -1/8, which corre- 
sponds to the third order of accuracy approximation 
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Figure 1. Perspective view of the bottom topography for all four cases. The quarter of the domain closest to the viewer has 
been lowered down to the deepest value for illustrative purpose. The actual topography is symmetric and has continental 
slopes along all four sides. The shape of the slope can be easily seen on the cross sections. The minimum depth near the 
sides is 20% of the deepest value in the middle. 

for the nonlinear part of the stress tensor. Though 
not the best from the point of view of (8), this choice 
virtually eliminates aliasing errors caused by the sub- 
sequent use of spatial averaging and finite differencing 
of the averaged values. Consequently, the asymmet- 
ric scheme does not generate spurious enstrophy cas- 
cades to small scales and, therefore, requires a rela- 
tively small explicit dissipation to keep the numerical 
stability. 

• The method of artificial compressibility is em- 
ployed to implement the fully implicit time step 
(Türkei 1987, Gresho and Sani 1987, Soh and Goodrich 
1988, Weiyan 1992, Alcubierre and Schutz 1994, Marx 
1994). This approach is based on introducing an in- 
ternal pseac/o-time and special relaxation procedure 
between physical time steps to obtain the solution. 
The iterative procedure starts from a second order 
explicit predictor in physical time to obtain the ini- 
tial approximation for the new time step fields. Af- 
ter that several ADI-type split-implicit substeps in 
pseudo-time are applied to obtain the pressure field 
at the new time step and correct the solution. The 
time step is unconditionally stable with respect to 

fast surface gravity waves, can formally be applied 
to the incompressible limit 3 = 00, and allows an 
implicit representation of the nonlinear and dissipa- 
tion terms. In comparison with the more common 
three time level semi-implicit version of Kwizak and 
Robert (1971), the new approach leads to four times 
smaller truncation errors in the time differencing of 
both nonlinear and pressure terms. The computa- 
tions presented here are performed on a 301 x 301 
grid. The nonlinear terms are recomputed 3 times 
per every physical-time step, and 8 w log2300 ADI 
iterations are required to correct the pressure field 
every time after the nonlinear part is recomputed. 

The Topographic Engine Experiment 

Because our purpose is to investigate the possi- 
bility of conversion of energy from random flow into 
large scale rectified motion, i.e., in thermodynamical 
terms, from heat into mechanical energy, we refer to 
this part of the study as the topographic engine ex- 
periment. In the present section we discuss several 
experiments with free decaying shallow-water turbu- 
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CONTOUR FROM .025 TO .925 BY .1 

Figure 2. The initial state. The potential vorticity field 
is shown in contours, while arrows represent velocities. 
Only every sixth vector is plotted. Note that the initial 
flow is composed of dipoles and has no specific symmetry. 
Also, there is no net circulation around the box. 

lence in the presence of bottom topography. All of the 
cases presented here have the same domain geometry 
and bottom topography shown in Figure 1. The bot- 
tom is flat in the middle of the basin and rises near 
the sides, which simulate the continental slopes. No- 
slip boundary conditions are imposed on the sides of 
the rectangular domain. 

To specify the initial state, we prescribe the poten- 
tial vorticity field (/-plane case, see below) or relative 
vorticity field (/?-plane cases), solve the elliptic prob- 
lem to obtain the streamfunction, and, finally, the 
mass fluxes of the initial state, which is always as- 
sumed to be nondivergent. The (potential) vorticity 
field of the initial state is always composed of ran- 
domly oriented dipoles, so that there is no net circu- 
lation around the box (Fig. 2). There is no forcing 
in any of our experiments. 

All computations are performed for nondimen- 
sional variables where we set different values of the 
nondimensional Coriolis parameters and keep all other 
nondimensional parameters unchanged. To get some 
impression about the correspondence of our experi- 
ments to the dimensional world, the four experimen- 
tal setups may be identified as follows: 

• The first case, hereafter referred as the /-plane 
case, corresponds to a domain of 500 x 500 km at 
45°N. The Coriolis parameter / = lO^sec-1 is as- 
sumed to be uniform. With velocity scale V = 1 

m/sec and the advection time scale T = L/V = 
5 x 105 sec « 6 days, the non-dimensional Coriolis 

frequency is 

T-LL 
v 50 

Grid resolution is 301 x 301 for the all cases presented 

here. 

• Weak /?-case 

Hv) = ^ + ßy = 50 + 50 (|-i 

Moderate /?-case 

J-(y) = J-o + /?|- = 150+150(|--) 

• Strong /?-case The domain size is 3000 x 3000 
km (from 20 N to 50 N). A velocity scale of V = 0.5 

m/sec gives 

^(j/) =400+ 400 (|-- 

The advection time scale 6 x 10+6 sec = 70 days 

The results of the computations are presented in 
Fig. 3 - Fig. 6. (See also captions for additional 
discussion.) 

The /-plane experiment: To compare the up- 
stream scheme with the original centered difference 
Lilly scheme, we run the /-plane case twice, using 
both schemes. All of the conditions are the same, ex- 
cept for the viscous coefficient A. The Reynolds num- 
ber (based on the domain size) is 10+4 for the centered 
difference case, which is nearly on the edge of the 
numerical stability for this numerical scheme. Note 
that the Reynolds number is 3 x 10+5 (which is 30 
times larger) for all other experiments, when the up- 
stream scheme is used to discretize the nonlinear part 
of the momentum flux tensor. We did not find any 
tendency to produce grid size scale oscillations when 
the upstream version is used. Despite the larger dis- 
sipation, the centered difference solution (not shown 
here) is much noisier, dissipate« kinetic energy faster 
and does not result in a monotonic decay of poten- 
tial enstrophy. However, the physical behaviour of 
the flow is similar for both cases. The experiments 
show that the turbulent flow tends to organize itself 
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T=0.440 T=1.347 

Figure 3. Temporal evolution of the potential vorticity field from the initial state shown on Fig. 2 for the case of an 
/-plane. Time is scaled by the advection time scale. The upper left panel shows the potential vorticity and velocity field 
shortly after the beginning. All the original dipolar structures are rapidly destroyed. At the same time, there is formation of 
new compact eddies near the walls. These eddies may have amplitudes of relative vorticity anomaly larger than the original 
field. The anticyclonic vorticity tends to concentrate in the middle of the basin, while cyclones are more likely to stay in the 
shallower regions near the sides. Note the formation of the cyclonic circulation around the box near the boundaries (lower 
right panel). 
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T = 0.440 T=1.347 

Figure 4. Case of weak planetary /3-effect. In this regime the /3-effect is not strong enough to either restrict fluid motion in 
the meridional direction, or to cause decay of mesoscale eddies via radiation of Rossby waves. However, it restricts the size 
to which the coherent structures may grow. Notice the presence of many small intense eddies in the middle of the domain 
instead of a large scale merged core, as seen in Fig. 3. There is also evidence of the development of a rectified cyclonic 
circulation around the domain (bottom right panel). 
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= 0.275 T=0.550 

Figure 5. Case of intermediate planetary /3-effect. The ß-eSect is now stronger and decay of mesoscale features due to 
radiation of Rossby waves becomes more evident. Time is scaled by the advection time scale. Note that these four snapshots 
are taken at times different from those of the two previous cases. This flow has north-south as well as east-west asymmetry, 
which were practically absent in the previous two experiments. Rectified circulation intensifies near the southern part of 
the domain and it detaches from the eastern coast. The separation point becomes also the place where anticyclonic eddies 
leave the coast and are advected into the interior of the basin, where they eventually will be destroyed by the ^-effect. 
The cyclonic eddies remain topographically arrested and tend to propagate along the eastern coast to the north. Note the 
appearance of an east-west alignment of eddies as well as a restriction of the fluid motion in the meridional direction. 
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T=0.797 

Figure 6. Case of strong planetary /3-effect. In this case the meridional change of the Coriolis parameter dominates 
the relative vorticity anomalies associated with the initial random eddy field. Consequently, the original structures were 
immediately destroyed. Both the east-west and. the north-south asymmetries are more pronounced than in the previous 
case. There is formation of both cyclonic and anticyclonic eddies near the western coast, but both the planetary /3-effect 
and bottom topography prevent them from being injected into the interior of the basin. Note formation of the intense jet 
along the southern boundary and recirculation gyre. As in the previous case, we see injection of small scale eddies at the 
flow separation point on the eastern coast. 
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into a current along the perimeter of the basin in the 
counter-clockwise direction, while the negative vortic- 
ity tends to concentrate in the middle of the domain 
(Fig. 3). In classical numerical simulations of free- 
decaying two-dimensional turbulence there is no pro- 
cess opposite to the vortex merger and, therefore, no 
small scale structures can be created from large scale 
structures. In our case, in contrast, there is gener- 
ation of small scale structures on the no-slip bound- 
aries. Injection of fresh, intense and compact new ed- 
dies into the interior of the domain enhances mixing 
of the low-vorticity anomalies of old vortices. Con- 
sequently we observe a relatively uniform potential 
vorticity background field with several small scale in- 
tense coherent structures embedded in it. In this situ- 
ation, regardless of the details of the initial state, the 
spatial spectrum of the turbulent flow rapidly reaches 
some equilibrium state, which persist during a rela- 
tively long period of time (bottom left panel of Fig. 

3)- 
Due to the presence of continental slopes and Cori- 

olis effect, the anti-cyclonic eddies are more likely to 
be driven into the interior of the domain, while anti- 
cyclones tend to stay near the walls. This can be 
explained by potential vorticity conservation and the 
energetics of the flow: moving a cyclonic vortex core 
from a shallow to a deep region causes its spin up: 

PV 
f + u 

H 
const, />0,     w>0 

increases 
/ —* conserved     i 

• f =^     < H —► increases     i 

The kinetic energy associated with an eddy is 

KE ~ Vol ■ u2r2 ~ Vol2 

H 

w 

where Vol ~ r2H is the characteristic volume of the 
vortex core, while r is its radius. Obviously Vol is 
conserved and both w and the ratio OJ/H increase 
due to the conservation of potential vorticity. Con- 
sequently, the kinetic energy has to increase when 
a cyclonic core is driven from the shallow to deeper 
regions. Thus, an external flow must produce some 
work on order to move the core. 

Similar considerations may be made for the anti- 
cyclonic vortices, where u> and / are of different signs. 
It turns out that there is no energetic barrier for the 
anti-cyclones to leave the coast. For example, zero 
potential vorticity eddies, u = —/, are not sensitive 
to the vortex stretching at all, while they may even 

release some amount of kinetic energy when H is in- 
creasing. On the other hand, assuming some dissipa- 
tion in the system, one can see that the process of re- 
distribution of the vorticity field becomes irreversible 

in the sense that once an anti-cyclonic eddy leaves 
the coastal region, it cannot come it back, unless it is 
pushed by the background flow. 

Weak /^-effect case. The most noticeable dif- 
ference from the previous case is the behavior of the 
turbulent flow in the interior. To some extent, the ß- 
effect inhibits the merging process inside the domain 
and restricts the size to which the eddies can grow 
(Rhines rule). There is no evident decay of single ed- 
dies due to radiation of Rossby waves. There is some 
evidence of the meridional restriction of the motion 
and east-west as well as north south asymmetry of 
the flow. 

Intermediate /?-effect case. The differences 
from the previous case are these: there is evident de- 
cay of eddies due to radiation of Rossby waves. The 
motion tends to be meridionally restricted. The orga- 
nized flow around the box is intensified in the south- 
ern part of the basin, while the northern part exhibits 
predominantly wave type motion rather than turbu- 
lent eddy flow. 

Strong planetary /?-efleet. Rapid decay of ini- 
tial eddies is due to radiation of Rossby waves. There 
is an evident formation of the organized flow with the 
strong jet along the southern boundary. 

For the all four cases the decay of the mean ki- 
netic energy is shown in Figure 7, while Figure 8 
shows time evolution of the mean potential enstro- 
phy. The kinetic energy is normalized by its initial 
value, so all curves on Figure 7 start from KE — 1 
and monotonously decay. The lowest curve corre- 
sponds to the dissipative centered difference scheme. 
It is presented here only to demonstrate difference be- 
tween the two numerical schemes. For physical con- 
siderations it should be ignored. From the other four 
curves one can conclude that presence of /?-effect gen- 
erally enhances dissipation. This result may require 
additional investigations, because for the case of un- 
bounded freely decaying geostrophic turbulence (dou- 
bly periodic domain) there is an opposite tendency: 
radiation of Rossby waves in a periodic domain does 
not dissipate energy, while the eddy mixing process 
(which causes eddy merging and filamentation - the 
main dissipative mechanism) tends to be suppressed 
(Rhines and Young 1982b). The difference may be 
explained by the presence of no-slip boundaries. 

Before interpreting Figure 8, it should be explained 
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21.60 0.00 5.40 10.80 16.20 

Figure 7. Time decay of the kinetic energy (KE) integral 
for all four different experiments. The KE is normalized 
by its initial value. The five curves, starting from the 
highest, correspond to the /-plane upstream case (termi- 
nates at t = 16.20); weak planetary /?-effect case (goes be- 
yond t — 21.60); intermediate ß (terminates at t = 13.5); 
strong ß (terminates at t — 5.8); /-plane case when cen- 
tered scheme was used (goes beyond t = 21.60). 

that the mean enstrophy is defined as 

<f>=(*>V> = (! 1H 
(9) 

where (...) denotes the integration over the domain. 

For a given initial state we may define the initial value 
of the potential enstrophy go = l(t = 0), and the 
mean potential enstrophy of the rest state 

<?rest 
P 

2HT, 

Fugure 8 shows the function 

q(t) ~ grest 

90 — 9rest 

(10) 

(11) 

Obviously, this function is the normalized mean po- 
tential enstrophy. In the case of a closed system, 
when no potential enstrophy can be generated on the 
boundary or brought in through the boundary, this 
quantity must be conserved if there is no internal dis- 
sipation. It monotonously decays from 1 to 0 if dissi- 
pation is present. 

^tirtie- 

0.00 5.40 10.80 16.20 21.60 

Figure 8. Potential enstrophy integral as the function 
of time for all four cases. The four curves (/-plane cen- 
tered difference case is not shown) may be identified by 
the length of the curve, similar to the previous figure. 

In the case when vorticity (and, consequently, en- 
strophy) may be created on the boundary, the be- 
haviour of this integral is not so evident. It is in- 
teresting to note that in the /-plane case it decays 
practically monotonously. All /?-plane cases may be 
characterized by an initial burst and a subsequent de- 
cay. We suggest that the initial state is very far from 
the dynamical equilibrium in the /?-plane cases, so, 
shortly after the beginning, the flow tends to readjust 
itself to bring all fluid parcels to their equilibrium 
latitudes. This process takes place mostly in the in- 
terior of the domain and causes generation of strong 
shear near the boundaries, which results in the gen- 
eration of small scale turbulence, which becomes the 
major contribution to the enstrophy integral. After 
this readjustment enstrophy decays. 

Final Remarks 

For the conclusion, we summarize several observa- 
tions: 

• Due to the presence of the no-slip boundaries 
there is generation of the small scale features which 
oppose the merging of sign-like eddies in the interior 
of the basin. 

• In the presence of topography on an /-plane, the 
turbulent flow tends to organize a rim current around 
the domain and concentrate negative vorticity in the 
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middle. 

• Coupling of bottom topography and Coriolis ef- 
fect causes cyclone-anticyclone asymmetry, even in 
the case when the Rossby number is small. 

• Migration of the eddies along the wall can be 
explained by image effect, topographic /?-effect, plan- 
etary /^-effect and interaction with the viscous bound- 
ary layer. Anti-cyclonic eddies are more likely to be 
ejected into the interior of the domain, while cyclones 
tend to be coastally trapped. This effect can be ex- 
plained in terms of conservation of the potential vor- 
ticity and energetic consideration. 

• A weak planetary /?-effect partially inhibits the 
merger process inside the domain. Rhines (1975) rule 
may also be applied to the case of ageostrophic dy- 

namics. 

• In the presence of topography, both weak and 
strong planetary /?-effects make the anti-cyclonic ed- 
dies more likely to separate from the coast than in the 
case of an /-plane. 

• The planetary /?-effect causes asymmetry of the 
rectified flow with intensification of southern bound- 
ary currents, which results in configuration of the flow 
similar to Fofonoff's southern mode inertial boundary 
current. 

• There is an east-west asymmetry in the boundary 
current behavior (Figs. 5 - 6). 

• There is a topographic instability of northward 
flowing eastern boundary current and cyclone-anticyclone 
separation near the eastern coast. 

From these numerical experiments we see that the 
rectification process is associated with several physical 
phenomena, such as vortex stretching and turbulent 
mixing, which are affected by the topography itself 
as well as by planetary vorticity gradients and lat- 
eral friction, which also allows generation of vorticity 
on the boundaries. This study shows that, in princi- 
ple, ocean models are capable to simulate this behav- 
ior directly, however, at a high computational cost. 
Parametrization of this effect is desirable, but not 
obvious. In particular, this effect has nonlinear and 
nonlocal nature, so that the statistical equilibrium ve- 
locity at some particular point depends on the global 
field, rather than on the local bottom slope and Cori- 
olis parameter. One can expect this keeping in mind 
the inherent elliptic properties of the barotropic flows. 
Parametrizations based on variational principles seem 
to be more attractive. 

One should recall that in numerical simulation of 
the geophysical flows there is a tendency to gener- 

ate finer and finer scales when the grid size and the 
lateral viscous coefficient decrease, rather than going 
to a computational regime when the fields become 
smooth on the grid scale. This classical mathemat- 
ical convergence is practically never achieved. This 
motivates the design of numerical schemes which pro- 
duce well behaved solutions in all scales up to the grid 
size. In many cases, special properties, such as non- 
generation of spurious cascades of enstrophy in small 
scales as well as properties of monotonicity (i.e. non- 
generation of spurious minima and maxima), may be 
more valuable than the formal order of the mathe- 
matical convergence. Because there are many desir- 
able properties and no one computational design can 
reproduce all of them, a compromise should be made. 
The scheme used in the present study is an exam- 
ple of such a compromise: despite the formal loss of 
the conservation of kinetic energy in the nonlinear 
terms, the better cascade properties allow the use of 
a smaller explicit dissipation. As a result, the model 
has better overall energy conservation than the model 
which uses the centered scheme. 
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Abstract. In a recent paper, Griffa et al. (1995) showed that, despite the fact that it was developed for quasi- 
geostrophic motions, statistical mechanics theory is able to capture the main aspects of the inertial equilibrium 
states that are outside the range of validity of quasi-geostrophy. These results encourage the development of 
subgrid scale parameterizations for oceanic general circulation models based on statistical mechanics predictions. 
In this paper, the effect of this type of parameterizations on one particular aspect of the oceanic wind-driven 
circulation, the separation of a western boundary current from the coast and its dependence on bottom topography, 
is investigated. The maximum entropy state predicted by statistical mechanics is characterized by a southward 
flow in the western part of the North Atlantic basin, opposite to the wind-driven northward boundary current. It is 
then natural to expect that, when parameterized in a numerical model, this tendency should have a significant 
impact on the current separation latitude by moving it to the south. This may be of importance as most coarse 
resolution numerical simulations of the North Atlantic circulation exhibit an overshooting Gulf Stream. 

1. Introduction 

The inertial characteristics of the oceanic circulation in 
a closed basin have been extensively discussed in the 
literature. In particular, the purely inertial limit (i.e., the 
limit of no forcing and no dissipation) for quasi- 
geostrophic flows has been studied using the theory of 
statistical mechanics. This theory predicts the existence of 
inertial equilibrium states corresponding to the maximum 
entropy of the system, characterized by mean flows with a 
linear relationship between streamfunction and potential 
vorticity (Salmon et al., 1976). These flows are often 
indicated as "Fofonoff flows" because in the case of a one 
layer, flat bottom, ß-plane basin, they correspond to the 
well known two-gyre solutions of the steady quasi- 
geostrophic equation first studied by Fofonoff (1954). In 
the presence of topography, the Fofonoff flows are 
modified and are given by solutions locked to the 
topography (Carnevale and Frederiksen, 1987). 

The predictions of the theory of statistical mechanics, 
and in particular the emergence of mean Fofonoff flows, 
have been tested in a number of numerical studies using 
the quasi-geostrophic equation. The results show good 
agreement with the theory (e.g., Wang and Vallis, 1994; 
Cummins and Holloway, 1994). The question as to 
whether or not the inertial tendency toward the Fofonoff 
flows persists outside the range of validity of quasi- 
geostrophy was addressed numerically by Griffa et al. 
(1995). This question is not a simple one to address 
theoretically, as generalizations of statistical mechanics 
theories are difficult to achieve. They have been attempted 
only for some specific cases (e.g., Salmon, 1982; Errico, 
1984). As suggested by Holloway (1992), the validity of 
the statistical mechanics theory outside quasi-geostrophy 
can have important and practical consequences. If the 
tendency toward a maximum entropy Fofonoff flow 
survives within the range of validity of the primitive 

equations, and if it is characteristic of the nonlinearity, it 
can then be used as a basis for a new and more accurate 
parameterization of the actions of subgrid scale nonlinear 
effects in low resolution ocean general circulation models 
(OGCMs). The parameterization proposed by Holloway 
(1992) replaces the traditional eddy viscosity that tends to 
drive the flow toward a state of rest with a term that would 
drive the barotropic part of the solution toward a Fofonoff 
flow (Alvarez et al, 1994; Eby and Holloway, 1994; Fyfe 
and Marinone, 1995; Holloway et al., 1995). 

In Griffa et al. (1995), inertial solutions obtained with a 
primitive equation numerical model were interpreted 
using the statistical mechanics results developed in the 
framework of quasi-geostrophic theory. The experiments 
were "initial release" experiments, where an initial 
random field of eddies is allowed to evolve freely and the 
emergence of equilibrium solutions is observed. The 
process of equilibration of the solutions was studied in 
detail, and the final states were compared with the 
Fofonoff solutions predicted by the statistical mechanics 
theory. The experiments suggest that, despite the fact that 
the theory was developed for quasi-geostrophic motions, 
statistical mechanics theory is able to capture the main 
aspects of the inertial equilibrium states that are outside 
the range of validity of quasi-geostrophy. 

These results therefore support the hypothesis of 
Holloway (1992) and encourage the development of 
subgrid scale parameterizations for OGCMs based on the 
statistical mechanics predictions (Eby and Holloway, 
1994). In this paper, we study the effect of this type of 
parameterizations on one particular aspect of the oceanic 
wind-driven circulation, the separation of a western 
boundary current from the coast and its dependence on 
bottom topography. As shown by Eby and Holloway 
(1994), the maximum entropy state predicted by statistical 
mechanics is characterized by a southward flow in the 
western part of the North Atlantic basin, opposite to the 
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wind-driven northward boundary current. It is then natural 
to expect that, when parameterized in a numerical model, 
the maximum entropy tendency should have a significant 
impact on the current separation latitude by moving it to 
the south. This may be of importance as most coarse- 
resolution numerical simulations of the North Atlantic 
circulation exhibit an overshooting Gulf Stream. 

The layout of the paper is the following. In section 2, 
the impact of topography on mid-latitude jet separation is 
briefly reviewed. The numerical model characteristics are 
introduced in section 3. In section 4, the basic numerical 
experiments are described and discussed in relation to 
Holloway (1992). Implementation of the subgrid scale 
parameterization and its impact on the solution is 
presented in section 5. Finally, the results are summarized 
and discussed in the concluding section. 

2. Background 
Bottom topography has for a long time been recognized 

as an important factor in the determination of the path of 
western boundary currents (Greenspan, 1963; Warren, 
1963). One of the earliest numerical studies of the 
influence of bottom topography on the ocean circulation 
was that of Holland (1967), in a homogeneous, ß-plane 
numerical ocean model with steady wind stress curl. He 
showed that topography plays a dominant role in the 
separation of the western boundary current from the coast 
and concluded that the presence of a western continental 
slope tends to induce an earlier separation of the jet as the 
jet follows lines of constant potential vorticity. 

Holland (1973) then considered the joint effect of 
baroclinicity and relief (JEBAR) and showed numerically 
that the transport of the anticyclonic subtropical gyre was 
enhanced with respect to the Sverdrup transport when 
both effects were considered. Holland (1973) noted that a 
horizontal velocity as small as 0.1 cm s"1 perpendicular to 
a continental slope with gradient 10"3 is able to produce 
topographic torques comparable to those of the average 
wind stress curl, suggesting that in the real ocean the 
topographic terms may be more important than the wind 
itself in determining the magnitude of the western 
boundary transport. 

The effect of continental rises on the wind-driven 
circulation in a quasi-geostrophic framework was recently 
further investigated by Thompson (1995), who developed 
a modification to the theory of Rhines and Young (1982) 
and carried out three-layer eddy-resolving quasi- 
geostrophic numerical simulations. The effect of large 
scale topography has been addressed in the findings of 
Treguier and McWilliams (1990) that topography of 
largest scale has the most important effect on the 
momentum balance of the flow, while small scale 
topography   has   an   indirect   influence   and   does   not 

contribute as greatly to the stress. Overall, large scale 
bottom topography has a significant impact on the oceanic 
flow, acting upon it mainly by means of effects on the 
potential vorticity field. Together with baroclinicity, it can 
account for much of the observed intensity and flow 
pattern of western boundary currents. The effects of 
topography are felt throughout the water column, but are 
most notorious in the deep ocean, where closed potential 
vorticity contours can "trap" the flow and drive it more 
efficiently. 

3. The Numerical Model 
The numerical model used in this study is the adiabatic 

version of MICOM (Miami Isopycnic Coordinate Ocean 
Model) (see Bleck and Chassignet, 1994, for details). It 
may be viewed as a stack of shallow water models, each 
consisting of a momentum and a continuity equation: 

d\ 
- + /kxv = -gVr| + F 

dt 

—+V(ftv): 
at 

(1) 

:0 

where v is the horizontal velocity field and F is an eddy 
viscosity operator that simulates the action of small scale 
processes. Other variables retain their conventional 
meanings. Horizontal velocities and vorticity are defined 
as layer properties. 

The operator F is expressed as 

F=A-V(AVv) 
h 

(2) 

where A is the eddy viscosity coefficient. As shown by 
Gent (1992), the operator (2) has the important physical 
property of being energetically consistent, in the sense that 
it induces energy dissipation during the flow evolution. 
The operator F*=AV2v, on the other hand, can actually 
generate energy in the context of the shallow water 
equations (1) as illustrated by Gent (1992). 

The model is configured for this study in a square 
ocean basin 2580 km on a side, with constant mesh size in 
the horizontal and three layers in the vertical. The model 
is driven by a zonally symmetric wind stress 

t = -T    COS 

f \ 
2nv 

KLoJ 

,0 

(3) 

where 
,     1r.-4     2-2 

x   =1x10   m s   . 
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Such forcing results in a Sverdrup circulation which 
consists of two gyres, subtropical and subpolar. The wind 
stress is specified as a body force acting only on the layer 
directly beneath the surface (Chassignet and Gent, 1991; 
Chassignet and Bleck, 1993). The eddy viscosity A is 
proportional to the grid spacing and is characterized by a 
constant diffusive velocity ud - AlVx equal to 2 cm s"1. 
The lateral boundary conditions employed on the four 
side-walls are free slip, i.e., zero vorticity. The bottom 
topography consists of four shelves (100 km wide) and 
four slopes (200 km wide of gradient a). 

4. The Wind-Driven Experiments 

Three weak slope (a =2.5xl0-3) experiments (Wl, W2, 
and W3) were performed with a mesh size of 20, 40, and 
80 kilometers, respectively. A second set (SI, S2, and S3) 
was performed for a stronger slope (a =1.25xl0"2). All the 
numerical experiments were integrated for 25 model years 
(1 model year is equal to 360 days) and the presented 
fields were averaged over the last 5 years. The 80-km 

experiments are considered the coarse mesh experiments 
and do not resolve the mesoscale eddies that are present in 
the fine mesh experiments (20-km grid). 

The 5-year time-averaged layer streamfunctions for the 
weak slope experiments (Wl, W2, and W3) are displayed 
in Figures 1, 2, and 3, respectively. In Wl, the mid- 
latitude jet is highly nonlinear, with large meanders. 
Mesoscale eddies are formed through baroclinic 
instabilities and the bottom layer is set in motion. The 
resulting circulation in the bottom layer is cyclonic and 
locked to the f/H contours (Figure 4a). It is quite intense 
(about 31 Sverdrups) with a marked signature in the 
barotropic streamfunction. As the resolution is decreased 
from Wl to W3, the eddy activity diminishes and the 
eddy-driven flow in the bottom layer becomes weaker 
(Figures 2d and 3d). The jet separation latitude is south of 
the zero wind stress curl line (ZWCL) in both Wl and 
W2, but exactly at the ZWCL in W3. The two possible 
factors responsible for a southward separation of the 
western boundary current are (1) topography and (2) the 
fact that the wind is prescribed as a body force over the 
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Figure 1.   5-year time average layer streamfunctions (in Sverdrups) for the weak slope experiment Wl (grid spacing 20 km). The 
arrow represents the ZWCL. 
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Figure 2. As in Figure 1, for experiment W2 (grid spacing 40 km). 

uppermost layer (Chassignet and Gent, 1991; Chassignet 
and Bleck, 1993). To assess the effect of topography, a 
control experiment was performed with a flat bottom and 
high resolution (20 km). For this configuration, the 
separation is located at the ZWCL (Figure 5) implying 
that the southern separation in Wl and W2 can be 
attributed solely to the topography. 

A reduction in the bottom layer flow intensity is also 
observed in the strong slope experiments (SI, S2 and S3) 
(Figures 6, 7, and 8) with a decrease in resolution, except 
that the bottom layer cyclonic circulation now 
encompasses most of the basin, following the f/H contours 
(Figure 4b). 

Topography is seen to play a strong role in 
determination of the separation latitude, as all of the 
strong slope experiments show a separation point located 
farther south than that seen in their weak slope 
counterparts. 

5. Implementation of the Neptune Effect and 
its Impact on Mid-Latitude Jet Separation 

5.1 The Neptune Effect and its Implementation 

The so-called "Neptune" effect (Holloway, 1992) is a 
subgrid scale parameterization that seeks to represent the 
effect of eddies interacting with topography, an interaction 
that is capable of exerting large stress upon the mean 
circulation. This parameterization is achieved by relaxing 
the velocities toward a maximum entropy solution that 
depends upon the shape of the topography. The theory 
(Salmon et al., 1976) was developed using statistical 
mechanics in the context of quasi-geostrophy. It does not 
take into account the effects of external forcing or of 
dissipation. 

As suggested by Eby and Holloway (1994), motions on 
scales larger than the first Rossby radius of deformation 
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Figure 3. As in Figure 1, for experiment W3 (grid spacing 80 km). 

Figure 4. f/H contours for (a) the weak slope experiments (oc=2.5 x 10"3) and (b) the strong slope experiments (a =1.25 x 10") 



244 ROUBICEK, CHASSIGNET, AND GRIFFA 

are expected to be barotropic, and, according to the 
maximum entropy principle of statistical mechanics, their 
equilibrium states should satisfy 

(a,/a2-V%) = {q) (4) 

where (\\f) is the time-averaged streamfunction, 0Ci/a2 is a 
ratio of Lagrange multipliers, and (q) is the time-averaged 
depth integrated potential vorticity. For a coarse 
resolution model, Holloway (1992) simplified (3) by 
assuming that variations in topography are larger than 
variations of / and that the model grid is larger than 

L = (oC]/a2)
/2. He then expressed the maximum 

entropy equilibrium solution as 

Mf*=-fl}H (5) 

where H is the total depth. For more details, the reader is 
referred to Holloway (1992). 

One may question the applicability of such a theory to 
forced solutions. A number of experiments have been 
performed  with forcing  and  dissipation  to  study  the 
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Figure 5. 5-year time average upper-layer streamfunction (in 
Sverdrups) for the flat-bottom experiment. 

relevance of the inertial equilibrium states to forced 
solutions. In these experiments, Fofonoff flows, despite 
the presence of forcing, appear to be representative of the 
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Figure 6. 5-year time average layer streamfunctions (in Sverdrups) for the strong slope experiment SI (grid spacing 20 km). 
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tendency of the nonlinearity, and the actual shape of the 
forced solutions depends upon the competition between 
this tendency and the effects of the forcing (e.g., Griffa 
and Salmon, 1989; Cummins, 1992, Griffa and Castellari, 
1991). These experiments were performed with a quasi- 
geostrophic model. Recently, Griffa et al. (1995) also 
showed that, despite the fact that the theory was 
developed for quasi-geostrophic motions, statistical 
mechanics theory is able to capture the main aspects of the 
inertial equilibrium states which are outside the range of 
validity of quasi-geostrophy. 

Introduction of dissipation in a series of one-layer "initial 
release" experiments similar to the ones discussed in Griffa et 
al. (1995) does modify the (y)-{q) scatter plot from a linear 
relationship to one with a small curvature and a smaller ratio 
of the Lagrange multipliers 04 /a2 (Roubicek, 1995). In the 
high resolution wind-driven experiments (Wl and SI) 
introduced in the previous section, only the bottom layer can 
be considered as a random collection of eddies generated by 
fluctutions in the uppermost layer. While the forcing is 
continuous, these eddies tend to organize themselves as 
Fofonoff flows as illustrated by Figures 2d and 7d. The 
corresponding (\|/)-(<7) scatter plot (not shown) is in qualitative 

agreement with the dissipative "initial release" experiments, 
especially for the strong slope experiment SI (Roubicek, 
1995). 

These results illustrate the possible relevance of statistical 
mechanics theory to wind-driven dissipative solutions. For 
practical applications, L is difficult to determine (Eby and 
Hollo way, 1994) and can be obtained from the {y)-{q) scatter 
plot only for idealized cases. In the remainder of this paper, L 
was chosen as a constant 15 km based on "initial release" 
experiments of Rossby number equivalent to the wind-driven 
experiments (Roubicek, 1995). The simplified maximum 
entropy solutions i|i* (Equation 5) corresponding to the 
sloping topography is displayed in Figure 9. The subgrid scale 
parameterization proposed by Holloway (1992) relaxes the 
barotropic velocity field in the absence of forcing toward v*: 

1 3i|/ 1 3\|/ 

H dy ' H dx 

by modifying the operator F as F = A—V(/iV(v-v*)). 
h 
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Figure 7. As in Figure 6, for experiment S2 (grid spacing 40 km). 
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Figure 9. Transport streamfunction v|/* (in Sverdrups) (a) for the weak slope experiment and (b) for the strong slope experiment. 
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experiments, as described in the text. 
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The effectiveness of this relaxation is dependent upon the 
magnitude of the eddy viscosity coefficient A . 

It is of interest to first investigate this relaxation 
mechanism in the absence of wind forcing, since both the 
ß-effect and topography play a significant role in the 
adjustment, whereas only the topography effects are 
captured by the parameterization. Figures 10 and 11 show 
the end state barotropic streamfunctions resulting from the 
integration of (1) with zero forcing and with the sub-grid 
scale parameterization, for the experiments with weak and 
strong topography respectively. The adjustment is 
relatively fast, but the final kinetic energy level varies 
greatly as a function of the eddy viscosity coefficient 
(Roubicek, 1995). The left panels in Figures 10 and 11 are 
for experiments with A = 80 mV1, and the right panels for 
experiments with A = 8000 mV1. From top to bottom, the 
figures correspond to experiments that were run on an /- 
plane with no topography, on a ß-plane without 
topography, and on a ß-plane with topography. 

On the /-plane, the flow for the low viscosity 
experiments (Figures 10a, 11a) does not have a strong 
organized cyclonic circulation when compared to the high 
viscosity cases (Figures lOd, lid) and to the maximum 

entropy fields (Figure 9). On the ß-plane, this flow is 
modified into zonal bands of cyclonic and anticyclonic 
cells (Figures 10b,e and llb,e). Topography, when 
present, strongly traps the flows to a cyclonic circulation 
dictated by the f/H contours (Figures 10c,f and llc,f). 
While the subgrid scale parameterization appears to be 
relatively effective in these experiments, especially for 
strong topography, the combination of the ß-effect and 
topography can lead to a resulting field different from the 
maximum entropy solution. 

5.2 Impact on Mid-Latitude Jet Separation 

The subgrid scale parameterization was applied to the 
coarse resolution wind-driven experiments of section 4. 
The 5-year time-averaged streamfunctions for both the 
weak and the strong slope experiments (W4 and S4, 
respectively) are displayed in Figures 12 and 13. 

When compared to the experiments without the 
parameterization, the differences are small for the weak 
slope case (W4). The parameterization has little impact on 
the circulation of the uppermost layer and the jet 
separation latitude remains at the ZWCL. The only visible 
signature is in the bottom layer where the topographically 
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Figure 12. 5-year time average streamfunctions (in Sverdrups) for the weak slope experiment W4. 
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Figure 13. 5-year time average streamfunctions (in Sverdrups) for the strong slope experiment S4. 

trapped cyclonic circulation is increased by about 10 
Sverdrups (Figure 12d). The effect is more vigorous in the 
strong slope case (S4) where the signature of the 
parameterization is present in all layers (Figure 13). 

In S4, several features characteristic of the high 
resolution experiment SI, not observed in the coarser 
resolution experiment S3, are now present. The mid- 
latitude jet separates from the coast at a point further to 
the south and penetrates the interior in a less zonal fashion 
than in S3. In the bottom layer, the circulation is intense, 
considerably stronger than in SI, and dominates the 
barotropic flow. 

6. Summary and Concluding Remarks 

Implementation of the "Neptune" parameterization in 
idealized wind-driven experiments with topography led to 
mixed results. On one hand, in cases with weak 
topography, the signature of the parameterization is very 
small and has very little impact on the upper layer 
circulation and the jet separation latitude. On the other 
hand, strong topography leads to a stronger parameterized 

maximum entropy flow and its signature is visible in all 
layers. The mid-latitude jet indeed separates at a more 
southern latitude, but the strong cyclonic circulation 
induced by the parameterization is predominant in the 
barotropic circulation and much more intense than in the 
fine resolution case. While it is apparent that such a 
parameterization is desirable in coarse-resolution 
experiments, its implementation is not straight forward. 
The experiments presented in this paper indicate that the 
value chosen for L may be a function of the chosen 
topography as one may wish for stronger (weaker) 
parameterization for weak (strong) topography. As stated 
by Eby and Holloway (1994), oustanding issues still 
include the physical basis for the estimation of L and the 
appropriateness of the operator F. 
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Measuring the Skill of an Ocean Model under Eddy-Topographic Effects, 
Based on a Global Inventory of Long-Term Current Meters 

Greg Holloway and Tessa Sou 
Institute of Ocean Sciences, Sidney B.C. V8L4B2 Canada 

Abstract. From a global inventory of current meters, each of more than 100 days duration, we calculate skills of a 
global ocean model with and without a parameterization of eddy-topography interaction ("Neptune"). Skills are 
measured by the kinetic energy of the difference between modeled and observed flow and by error in direction. 
We assess confidence in the results by repeated tests in which half of the observations are rejected. Without 
Neptune, the model achieves small but significantly nonzero skills. Inclusion of Neptune improves skills by an 
increment roughly twice as large as the basic skills without Neptune. 

Measuring Model Skill 

Advances in computing power have increasingly 
allowed large scale ocean models to execute with more 
realistic detail of topography. However, mechanics of 
eddy-topography interaction may yet require much finer 
resolution before they can be treated explicitly. An 
alternative to parameterize eddy effects is an active 
research topic (Roubicek, Chassignet, and Griffa, this 
volume). When developing parameterizations for 
practical application, one seeks "skill measures" based 
upon observations against which one may refine uncertain 
model aspects. One tries to identify those ocean attributes 
which are well observed and which exhibit sensitivity to 
model components one seeks to refine. 

Recently Alvarez et al. (1994), Eby and Holloway 
(1994, hereafter EH), Fyfe and Marinone (1995) and 
Holloway et al. (1995) have implemented a representation 
"Neptune effect") of eddy-topography forcing. These 
studies considered the western Mediterranean, global 
ocean, Georgia Strait, and Japan Sea domains, 
respectively, reporting apparent improvement in fidelity of 
modeled circulations. Other than modest parameter 
exploration in the Japan Sea study, little has been done to 
systematically adjust uncertain Neptune parameters 
against directly observed flows. Rather, the various 
authors have only cited examples of currents that may be 
"better" with Neptune. We seek more quantitative 
measure of such putative "improvement", perhaps 
providing a basis for subsequent optimization. 

Oceans have been measured in many ways. 
Distributions of temperature (T), salinity (S), oxygen, and 
nutrients species are archived. Surveys of transient tracers 
are reported. Drift bottles, ship drift, current meters, and 
surface and subsurface floats provide information on 
currents. Satellite altimetry, electromagnetics, and 
acoustic methods provide further information. 

We considered datasets that provide global coverage, 
with an aim to measure performance of a global model 
such as EH rather than a more region-specific study. We 
first appraised the EH model against T and S from the 
Levitus    (1982)    atlas.     This    proved    frustratingly 

inconclusive. While the EH output exhibited large 
departures from Levitus, those discrepancies were 
insensitive to inclusion of Neptune. Errors in temperature 
and salinity are more dependent upon other factors such as 
uncertain surface forcing and model misrepresentation of 
mixing, stirring, and convection. We turned to datasets 
that directly address circulation features. (Although 
circulation and tracer distributions are coupled, inference 
of one from the other is unclear. A model which might 
get T and S "right" may still have circulation quite wrong, 
as seen in uncertainty of inverse models, while conversely 
"right" circulation can produce quite wrong T and S by 
misrepresentation of mixing, forcing, etc.) 

Altimetric products offer an approach to global 
circulation, at least on larger scales. However, as models 
tend to produce similar large scale gyres under Sverdrup 
dynamics (to within eddy-driven recirculation and artifacts 
of grid-scale smoothing), altimetry may not be decisive 
with respect to topographic effects upon mean flow We 
expect some of the swiftest narrow flows to overly steep 
topographic slopes where geoid uncertainty will 
contaminate altimetric estimation of mean flow. Other 
approaches based upon transient tracers or drifters offer 
promise which we've not yet pursued. We turn to long- 
term current meter records. 

From published results as well as privately contributed 
archives, we've assembled more than 2000 records based 
on minimum duration of 100 days. Unhappily, the global 
distribution is quite nonuniform. Moreover, one may 
anticipate that any current meter, even if its duration is 
sufficient to sample some long-term "mean" (itself an 
ambiguous idea), may be quite unrepresentative of flow 
resolved on a model with grid spacing of 200 km (as EH). 
Equally long-term records obtained only some few 
kilometers apart may differ markedly depending upon 
specifics of local topography. Our hope is that, if there is 
not a systematic bias in the unrepresentativeness of each 
current meter, then large numbers of records should 
provide useful skill measure. 
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Definitions of Skill 
At each current meter we obtain mean flow d, = («,v);, 

where "mean" means time-average over the duration of 
the j'-th record. We also note the total variance a2,- of 
departures from d,. (In many cases variances of the u- and 
v-components, and the Kv-correlation, or principal axes of 
a variance ellipse, are available. However, to provide 
uniformity over as large a global dataset as possible, we 
use only o ,-.) 

In the case of EH, the GFDL model "MOM 1.1") was 
run in global domain on a grid 1.875° longitude by 1.856° 
latitude by 31 levels. Two runs were made, integrated for 
800 years each under climatological mean wind 
(Hellerman and Rosenstein, 1983) with surface relaxation 
of T and S to Levitus (1982). One run ("AsUsual") was 
done in a conventional manner; the other run ("Neptune") 
centered the lateral viscosity operator about a non-zero 
flow field U*, thus AmV2(u-U*), where U* is obtained 
from a transport streamfunction \|/*= -fL H, where / is 
Coriolis parameter, H is water depth and L is length 
parameter given by EH as a weak function of latitude. 
The velocity fields from EH runs were then interpolated to 
current meter locations to obtain model velocity mi. 
Difficulties arose due to coarseness of grid and the 
"staircase" topography of the GFDL model. Current 
meters which might be near steep topography were 
sometimes seen by the model as interior to "earth". Ad 
hoc rules "rescued" as many current meters as possible, 
for example by applying the bottom-most model velocity 
to be located at the current meter when such current 
meters occurred "not too far" below the model ocean 
bottom. 

We wish to measure the skill of {m,} against {d, }. A 
natural choice is to measure energy of the difference m-d, 
thus an error kinetic energy eKE = 0.5(m-d)*V" «(m-d) 
where V is a diagonal matrix of elements a2 normalized 
to trace V = 1. Ideally V would be a matrix of standard 
error of estimates d, of some "true mean" < d, >. To make 
this calculation we would need to estimate numbers of 
degrees of freedom in the current meter records. In some 
cases, investigators produced such information; but in 
many cases it is not available. For uniformity while 
retaining the largest dataset, we've kept only a ■,. 

As reference for eKE, we compare the weighted KE of 
the data (dKE = O.Sd'V'M). Then it is convenient to 
form a ratio which we call "skillE" ("E" is for "energy"): 

skillE = (dKE - eKE) / (dKE + eKE) 

such that an error-free model (eKE = 0) yields skillE = 1 
whereas a model with huge eKE » dKE yields skillE 
approaching -1. Within the range -1 <skillE <1 it is also 
important to note the skill of a completely skill-less 
model, one whose flows m are randomly unrelated to d. 
With the weighted kinetic energy of the model (evaluated 
at   the   current   meter   locations)   given   by   mKE   = 

0.5m«V_1«m, the value of skillE for the skill-less model is 
called "skillF' ("F" is for "floor"): 

skillF = - mKE / (2dKE + mKE) 

so that the achieved energetic skill of the model is the 
difference skillE - skillF. 

We've examined another measure of skill based only 
on unit vectors d, = d, /I d, I and m = m /I m I by forming 
the weighted inner product "skillD" ("D" is for 
"direction"): 

skillD = d'V^m 

so that skillD simply asks if the model knows which way 
the water goes, regardless of speed. SkillD also falls 
within bounds -1 <skillD <1 

Results 
As we gather current meter records from various 

regions, we ask how stable will be the results for skills E, 
F and D, given the plausible unrepresentativeness of 
current meters relative to a coarse resolution model. We 
found that after we had several hundred records in the 
database, results became more stable with respect to 
adding further records. With more than 1000 records, 
similar results were obtained and were like those found in 
the present paper using nearly 2000 records as given 
below: 

E F E-F D 
AsUsual 0.003 -0.065 0.068 (0.034) 0.103 (.080) 
Neptune 0.093 -0.100 0.193 (0.037) 0.288 (.065) 
U*only        0.087    -0.080     0.167 0.289 

None of the skills are very large. Although this reflects 
in part model infidelity, both from unfaithful internal 
dynamics as well as imperfect applied forcing, the small 
values of skill also reflect the difference between 
pointwise current meter records and a model 
representation on vastly coarser scale (even if such a 
model were "perfect" on its resolved scales). 

Results in the first two rows are from EH, without and 
with Neptune parameterization. To assess stability of the 
results, we performed ten trials in which individual current 
meter records were rejected with probability 0.5. Roughly 
half the data were randomly discarded for each because 
we cannot know which current meters are influencing 
skill. The standard deviations of skills E-F and D from 
these ten independent trials are shown in parentheses. 

Although skills are small, some results emerge. All of 
the E-F and D are positive, which may be encouraging for 
the numerical modeling enterprise in general! Moreover, 
the skills are positive by more than one standard deviation 
across the ten trials that randomly reject half the data. Of 
concern here is that the increment in skill from "AsUsual" 
to Neptune is roughly twice as great as the basic skill of 
"AsUsual". This increment is substantially larger than the 
standard deviation across the ten trials. 
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One sees clear suggestion that eddy-topographic 
forcing is a major part of ocean dynamics, hitherto 
omitted in non-eddy-resolving models and possibly quite 
corrupted by marginally eddy-resolving "eddy-admitting") 
models. The specific parameterization employed by EH 
appears to contribute skill. One could imagine repeating 
the skill calculations above to "tune" the EH 
parameterization; however, the computational cost to do 
so is large and may not be warranted given the presently 
uncertain basis on which the EH parameterization was 
proposed. 

A third line in the table adds a chilling footnote. Our 
idea with Neptune parameterization is that internal eddy 
tendencies compete with externally imposed forcing 
(wind, thermal, freshwater, ...) We suppose that 
combining the two tendencies by means of 
parameterization should yield superior results, as the table 
indeed indicates. Now we "turn the table" by retaining 
only the parameterized internal tendencies while omitting 
all external forces. [One may object that without external 
forcing there wouldn't be eddies hence shouldn't be any 
such parameterization. However, first, we only mean to 
pose an "interesting" remark and, second, we omit only 
mean forcing. Or one could bandy words about stochastic 
forcing by unresolved monster goldfish.] Without mean 
external forcing, Neptune simply brings the flow to u = 
U*. Following conventional wisdom that wind and sun 
and such cause ocean currents, we should expect to see 
skill markedly reduced when we remove (in the mean) the 
wind and sun and such. Surprisingly and perhaps 
distressingly, the table does not support this. Skills E - F 
and D under U* only are insignificantly different from 
Neptune (which includes conventional forcing). While 
the global inventory of current meters shows statistical 
mechanics at work, after taking this into account the 
inventory of current meters cannot tell "which way the 
wind blows". [We haven't taken a next step to blow the 
mean wind backwards and see if it really doesn't matter.] 

There is another footnote. While we have drawn upon 
statistical mechanics to improve the modeling of mean 
flow, there is an intimate connection between equilibrium 
statistical mechanics and nonlinear stability as discussed 
by Carnevale and Frederiksen (1987), leading us to 
suggest that flows nearer to U* should be more stable 
hence more steady. 

Do current meter records support this? From the 
inventory, we formed two bins: simply "with" or "against" 
U* (as sign d*U*). We found (for the number of current 
meters then available) there were 677 "against" and 1156 
"with" U*, consistently with skillD. Averaged over each 
bin, we formed the kinetic energy of fluctuations (eddy 
KE, "EKE") and the kinetic energy of mean flows 
"MKE"). Ratios EKE/MKE were 1.78 "with" and 3.03 
"against". These are ratios of average quantities. We also 
considered the ratio EKE,/MKE, at each current meter, 
averaging these ratios over each bin.    The results are 

wilder (less stable) numbers: 35.1 "with" and 99.1 
"against". We see evidence that when external forcing 
admits flows closer to statistical mechanical equilibrium, 
these tend to exhibit less variability. 

Aconclusion 

It is too early to draw conclusion about such a "new" 
idea as the role of entropy gradients forcing ocean flows. 
The important and rather exciting observation is that it 
seems possible to make substantial advances in the skill of 
ocean models (or theory) by recognizing internal eddy 
tendencies as playing a role far greater than in usual eddy 
viscosity. We consider a probability distribution of 
possible oceans, gradients of distribution entropy 
appearing as forces acting upon realized moments of the 
distribution. Approximating such forces in practice has 
consisted of estimating the entropy gradient by (linear) 
departure from an approximate state of higher entropy (a 
maximum under idealized quasi-geostrophic (QG) 
dynamics). In particular we anticipate that eddy- 
topographic effects ("Neptune") should drive flows 
toward a non-zero mean state rather than "as usual" state 
of rest. A poorly determined eddy "fudge factor" appears 
as the L2 in the definition of U*. We surely guess that this 
prescription is not "right"; only it may be less wrong than 
"as usual". 

Comparing effects of including Neptune tendency with 
observations from a global inventory of current meters, 
one may be encouraged by a striking increment in skill. 
Measured either by kinetic energy of the difference 
between model flow and observed flow, or simply by 
agreement in direction, the increment in skill is nearly 
twice as large as the basic skill "as usual". A caution is 
needed: These results, based upon model integrations of 
EH, test skill against a particular configuration of the 
GFDL ocean model, with coarse resolution and sundry 
internal parameters under particular conditions of external 
forcing. Such model outcomes are distressingly sensitive 
to "fiddles" with internal parameters and external forcing, 
with "details" of topography, and with respect to 
underlying model formulation (for example in layers 
rather than levels). The danger of appearances of right 
answers for wrong reasons is ever a concern. What we 
can see is the possibility for substantial progress, both at 
theoretical understanding and at practical model skill. 
This motivates fresh attention to such basics as statistical 
mechanics in QG dynamics and to extensions such as 
explored by Roubicek et al. While further efforts are 
made at fundamentals, we may also learn from try-and-see 
practical application, ranging from global integrations 
through marginal sea studies (Alvarez et al., 1994; 
Holloway et al., 1995) to estuarine scales (Fyfe and 
Marinone, 1995). 
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Abstract. The nearshore is, by definition, a region where topography has an 0(1) influence on fluid processes. 
These processes range from the evolution of ocean waves as they peak and break over the shrinking depths of 
the shoaling bathymetry, to the transfer of energy to other motions spanning a wide range of frequencies from 
mean flows through infragravity motions forced by modulations of incident wave heights, up to surface-injected 
turbulence associated with plunging breakers. On simple (monotonic) beach profiles, these processes are 
fascinating and wide ranging. The introduction of complexity in the bathymetry through the addition of one or 
more offshore sand bars adds new processes that had not been expected and that are not simple extrapolations of 
monotonic beach dynamics. 

The primary difference between nearshore processes and other regions discussed in this 'Aha Huliko'a 
workshop is that the bottom boundary is not fixed, but responds itself to the overlying fluid motions. Depth 
changes can be O(l) on time scales as short as a day. Thus understanding the behavior of the nearshore requires 
understanding of not just the two components (fluid forcing and bathymetric response) in isolation, but of the 
behavior that is associated with the interaction between these two components. In analogy to other cases, this 
feedback introduces the possibility that the nearshore acts a nonlinear system with the potential for unusual and 
even chaotic behavior. Observations are now confirming this possibility. Success will take a combination of 
exploratory modeling and a strong but simple field program for the collection of long data sets of system 
behavior. 

The Nearshore Problem 
The nearshore is defined by its sloping bottom 

bathymetry, extending from offshore depths that are 
greater than an incident wavelength (hence effectively 
infinite) to zero depths at the shoreline. Over this region a 
shoaling wave field, propagating from the deep ocean 
toward the beach, will undergo a profound evolution 
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Figure 1. The basic problem in nearshore processes is to 
understand the shoaling of an incident wave spectrum over a 
shallowing bathymetry, h(x). Depending on the nature of the 
bathmetry, transformations of the fluid field are usually strong, 
spreading energy across the spectrum. Moreover, these motions 
will cause a slow, cumulative change in the bottom profile that 
can easily become significant on the time scale of one day. 
Feedback between these two components can be substantial. 
Variability in the longshore dimension (not shown) is generally 
significant. 

(Figure 1). The sight of waves steepening, then pitching 
over into a turbulent breaker is familiar to all. From a 
spectral point of view, this transformation drives energy 
from intermediate, ocean frequencies of order 0.1 Hz to 
both the higher frequencies of peaky wave forms and 
turbulence as well as to lower frequencies and even mean 
flows. Thus, the issue of "flow-topography interactions" 
is a continual presence in the study of nearshore 
processes; there are no nearshore processes without the 
sloping topography of the beach. Thus, for the purposes 
of this conference the topic of the influence of topography 
on flow was narrowed to focus on the differences in fluid 
dynamical processes associated with "complex" 
topography, particularly the presence of a sand bar or 
other non-monotonic feature in the beach profile. 

However, this approach of examining the fluid 
processes associated with wave propagation over a fixed 
but non-simple topography is just one half of the problem. 
In fact, the beach topography, the bottom boundary 
condition for the fluid motions, is itself made up of 
unconsolidated sand that will slowly respond to the 
overlying fluid motions (Figure 1). While the sediment 
mobility has no substantial impact on instantaneous fluid 
processes, sediment transport is cumulative, with the time 
scale of appreciable bathymetric change being about three 
orders of magnitude longer than that of fluid motions at 
the corresponding length scale. If the fluid processes are 
temporarily considered fixed, then models can be 
formulated for the tendency of the bottom to change form, 
for example with the generation of a new sand bar form. 
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If studies of the nearshore system are motivated by 
development of a predictive capability, then the 
interaction aspects of the system cannot be ignored. Fluid 
processes depend crucially upon bottom topography while 
bottom topography depends on overlying fluid motions. 
This feedback is the basis of nonlinear dynamical 
behavior of the entire nearshore system. To tackle the 
problem, we must be willing (and able) to explore the 
nature of the entire nonlinear nearshore system. 

This paper will provide a flavor of the progress being 
made and the problems encountered in the contemporary 
studies of nearshore processes. In the next section, 
examples of the interesting physics associated with fluid 
dynamics over non-monotonic bathymetry will be 
described. Next, the simple, linear models, traditionally 
invoked to explain the generation of non-simple 
bathymetry, will be summarized along with their failures. 
Then the complications that are expected when feedback 
of the interaction is allowed will be discussed. Finally, 
some future research directions will be noted. 

The Influence on Complex Topography on 
Nearshore Flow 

All nearshore flows are distinguished by the importance 
of sloping bathymetry. Numerous review articles have 
been written (e.g., [Holman, in press]) describing progress 
in the understanding of fluid processes over shoaling 
bathymetry that is considered fixed (this is the situation 
for the typical field experiment, where nearshore 
topography is regularly measured and, for modeling 
purposes, is considered constant between surveys). The 
range of interesting physics is large, but one noted 
example has been the generation of infragravity energy 
(periods of order 60 s), apparently forced by modulation 
of the incident wave amplitude. While the frequency and 
longshore wavenumber characteristics of this forcing 
appear quite broad-banded, the nearshore response 
appears well tuned (Figure 2), consisting of resonances of 
topographically trapped edge waves [Oltman-Shay et al, 
1989]. 

In the past decade, earlier studies on monotonic beach 
profiles have been extended to more complex, barred 
beaches through field experiments at Duck, NC, and other 
sites. In many ways, the influence of the increased 
complexity has not been substantial, merely leading to 
kinematic changes to the wave form but no new physics 
[Howd et al, 1992]. However, for low sloping beaches 
where the bar appears dynamically to be distant from the 
shoreline, incident band energy can be refractively 
trapped to the bar, independent of the shoreline fluid field 

[Bryan and Bowen, in review]. The consequences of 
these bar-trapped edge wave resonances to the behavior of 
the overall system remain to be determined. 

A perhaps more startling consequence of complex 
topography was found with the discovery of shear waves 
in the nearshore at far infragravity frequencies (of order 
200 s) [Bowen and Holman, 1989; Oltman-Shay et al, 
1989]. Shear waves are vorticity waves that arise from the 
instability of mean longshore currents. They are rigid lid 
phenomena, with longshore propagation rates slightly 
slower the peak mean longshore current velocity, at least 
an order of magnitude slower than the slowest gravity 
wave of similar frequency (Figure 3). 
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Figure 2. The distribution of wave energy with frequency 
(vertical axis) and longshore wavenumber (horizontal axis) for a 
representative day at Santa Barbara, CA, a beach with a 
monotonic profile. The channel shown is the longshore 
component of velocity. Through the infragravity band (shown 
here), the distribution of energy in wavenumber is certainly not 
broad, instead concentrating strongly at wavenumbers predicted 
for low mode edge waves (curved lines). From [Oltman-Shay 
andGuza, 1987]. 
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Figure 3. Frequency-wavenumber spectrum of longshore 
velocity for Duck, NC, a beach with a distinct offshore sand bar. 
Similar to Figure 2, there is a concentration of energy into 
narrow bands, associated with edge waves (an offset between 
theoretical mode lines and the data was later corrected by 
accounting for Doppler shifting due to the mean longshore 
current). In contrast to Figure 2, these is also a clear ridge of 
energy indicating motions progressing to the south at celerities 
that were substantially too slow to be associated with any 
gravity wave (the indicated mode 0 dispersion lines are the 
slowest known gravity wave motions). This ridge represents 
shear wave energy, driven by an instability of the mean 
longshore current. From [Oltman-Shay, et at, 1989]. 

In principle, longshore currents will be unstable on 
both monotonic and complex beach profiles. However, 
the strength of the instability depends on the seaward 
shear of the longshore current jet. On barred beaches, a 
large shear is forced by wave breaking on the seaward 
face of the sand bar and the instability is strong. On 
monotonic beaches, wave breaking is spread over a wide 

region and the seaward shear is weak; the strength of the 
instability is weak, barely exceeding frictional dissipation. 

Thus, a systematic difference exists in the dynamics of 
longshore currents between barred and monotonic 
beaches. The strong shear waves generated over a sand 
bar have an associated cross-shore Reynolds flux of 
momentum that serves to diffuse the mean longshore 
current jet (in fact, there is reason to believe that observed 
cross-shore profiles of mean longshore current may 
represent a balance between a jet-like tendency due to 
strong breaking fixed to the bar crest and a broader form 
due to the cross-shore mixing of this jet by the shear wave 
instability whose strength varies with the shear of the jet). 
Note that the dynamics of this cross-shore mixing would 
be quite different on a monotonic beach where shear 
waves play no significant role. Thus, proper modeling of 
nearshore mixing is fundamentally different on complex 
versus monotonic beach profiles. 

The Influence of Flow on Nearshore 
Bathymetry 

Traditional models for the generation of complexity in 
nearshore bathymetry have been linear in the sense that a 
template for sediment transport convergence has been 
provided by some characteristic of the nearshore flow 
field. Two popular candidates for producing the template 
were (a) some change in flow associated with the onset of 
wave breaking (the break point model), and (b) the nodal 
patterns of standing wave motions (Figure 4). For the 
latter, scale analysis showed that standing wave motions 
of sufficiently large scale to explain natural sand bars 
were typically of infragravity wave periods. Hence much 
of the interest in understanding the dynamics of these low 
frequency waves. 

Several problems exist with these simple models. First, 
the prediction of sediment accumulation according to a 
particular pattern (for example a sand bar at some cross- 
shore location) implies that the fluid processes have 
associated with themselves a single cross-shore scale (or 
at least a single, simple pattern). Neither models easily 
fits this criteria. Holland [in review] showed that natural 
infragravity band motions are very broad-banded, with no 
evidence that spectral peaks are statistically different from 
that expected for white noise. Thus, there would be no 
preferred cross-shore scale. For the break point model, 
natural wave fields have been shown to have wave heights 
that are Rayleigh distributed such that the location of the 
onset of breaking will be broadly distributed on 
monotonic beaches [Thornton and Guza, 1983]. While 
the onset of breaking is concentrated near the bar crest on 
beaches with a pre-existing sand bar, this is just the 
response of the fluid to a pre-existing topography, not the 
reverse. 

The latter point illustrates the second problem with 
"linear" models of sand bar generation; they are limited to 
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Establishment of a "template" of sediment convergence 
by: 

a)     nodes of standing infragravity waves 

b)    breakpoint of incident waves 

Figure 4. "Linear" models of sand bar generation rely on the 
slow convergence of sediment toward a pattern (template) that is 
a function of the fluid field only. Two models associate the 
template with (a) the nodes of standing wave motions of a 
particular infragravity frequency, and (b) the location of the 
onset of incident wave breaking. 

small amplitude bathymetric response (the fluid processes 
are considered fixed and not dependent on slow changes 
in the bathymetry). In fact, fluid motions are notoriously 
dependent on the details of the bottom boundary 
condition. The pattern of wave breaking will vary 
strongly even for the addition of a small perturbation on a 
previous simple bathymetry. Similarly, edge waves and 
other infragravity motions deform kinematically in 
response to changes in the bathymetry. Thus, linear 
models for the tendency of a beach profile to change 
under these fluid influences are limited to now-casting, 
with predictive capability severely limited by the rapid 
feedback of small bathymetric changes back into the 
overlying fluid motions. 

The Complete Interaction Problem 
The field of nearshore processes is different from other 

disciplines with respect the to the topic of this 'Aha 
Huliko'a workshop of fluid topography interactions. Like 
other discussed GFD problems of the workshop, there is 
also a substantial and interesting influence of complex 
topography on nearshore fluid processes. However, 
unlike   other   fields,   there   is   also   an   accompanying 

response of the topography to the fluids. This response 
can be on the same order as the local depth in time scales 
as short as one day. 

Thus, the nearshore should be considered as a system 
with two, fully interacting components. This feedback is 
one of the primary characteristics of a nonlinear 
dynamical system. From analogy with other such systems, 
we realize that these basic nonlinearities can introduce 
substantial complexity in the system and that our (linear) 
intuition may not be sufficient even to anticipate the basic 
phenomenology of the nearshore. 

Ample evidence exists that the nearshore system has 
much more complex behavior than we had previously 
suspected. For example, long term monitoring in the 
Netherlands has shown that the ubiquitous multiple 
offshore bar system there is offshore-progressive, with a 
period of roughly 4 years on the southern half of the 
mainland coast, 15 years on the northern half, and a 
different period on the northern barrier islands (Figure 5) 
[Ruessink and Kroon, 1994; Wijnberg and Wolf, 1994]. 
Such a behavior is not intuitive and has not been a 
constraint on previous modeling. 

Direct observations of the morphology of natural sand 
bars (the horizontal map pattern of bar crest position) 
confirm the feared complexity that occurs on natural 
beaches. For example, at Oregon State University, time 
exposure imaging of incident wave dissipation patterns 
has been exploited to study natural morphologies for the 
past decade [e.g., Lippmann and Holman, 1989]. These 
observations have shown that the simple sand bar 
morphologies (linear and even crescentic forms) are in the 
minority and that the most common bar configuration is 
one that is visually irregular in the longshore [Lippmann 
and Holman, 1990] (e.g., Figure 6). 
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Figure 5. Time variability of the position (a) and depth (b) of 
the bar crest of a natural bar system on one of the barrier islands 
on the North Sea Coast of the Netherlands. Bars apparently are 
formed close to the shore, then propagate steadily offshore to 
disappear when the bar crest depth reaches about 6 m. Offshore 
progression was a surprising observation that was only apparent 
after viewing long time series. From [Ruessink and Kroon, 
1994]. 



NEARSHORE TOPOGRAPHY INTERACTIONS 261 

position of underlying sand bars, there remain 
complications in interpretation of these data. Primary 
among these is the need to develop simple metrics of 
system state (bathymetry is a fully two dimensional field; 
we need to reduce dimensionality to at most one 
dimension, but preferably to a few scalar descriptors that 
can be easily visualized and compared to models). We 
cannot begin to search for simplifying phase plane 
representations until the metrics are identified (and the 
most useful metrics are those that will provide a 
simplifying phase plane representation!). The situation is 
further complicated by the need for appropriate non- 
dimensionalization so that beaches lying in different 
regions of dimensional parameters space (e.g., different 
climatological wave height or period) and with visually 
different behavior can be understood in some universal 
sense. 

Figure 6. Example video time exposure taken from Agate 
Beach, OR, on July 27, 1993. White bands show regions of 
preferred wave breaking (in taking a ten-minute time exposure, 
individual wave crests are no longer visible, only their time 
average dissipation pattern). Dark bands correspond to channels 
of deeper water, while white bands occur over submerged sand 
bars (or at the shoreline). The complexity of the bar system in 
this image is apparent. Substantial variability occurs over short 
time scales. 

The Future - How to Proceed 

In analogy to simple nonlinear dynamical systems, we 
choose to proceed with two approaches. The first is to 
investigate grossly simplified equations of the system 
(coupled equations for both the fluid motions over a 
bathymetry and the bathymetric response to those 
motions) to study the basic nature of the nonlinearities and 
to attempt to understand the basic phenomenology 
inherent in the systems. The emphasis on simplified 
equations rests on the assumption that the basic behavior 
(for example, the existence of sand bars and of longshore 
variability in the bar system) lies with the nonlinearities of 
the basic equations and is robust to details of the 
formulation (for example, the details of the wave bottom 
boundary layer and of sediment transport mechanics). 

The second approach is to collect long time series of 
"system behavior" in order to search empirically for a 
phase plane in which the behavior is simply understood. 
This approach is easier to state than to do, with several 
sources of complication arising. While the use of time 
exposure techniques (Figure 6) provides a simple, cheap 
and effective tool for this task (the time series at Duck, 
NC, the oldest of our stations, now extends to almost one 
decade), and while the white bands of preferred breaking 
have been shown to provide a good proxy for crest 

Conclusions 

The nearshore is, by definition, a region where fluid- 
topography interactions define the active processes. On 
simple (monotonic) beach profiles, these processes are 
fascinating and wide ranging. The introduction of 
complexity in the bathymetry through the addition of one 
or more offshore sand bars adds new processes that had 
not been expected and that are not simple extrapolations 
of monotonic beach dynamics. 

The real distinguishing feature of the nearshore is that 
the bottom boundary for the flow, the underlying 
sediment, is movable and depth changes can be 0(1) on 
time scales as short as a day. This feedback of the flow 
back into the topography makes the nearshore system a 
nonlinear system with the potential for unusual and even 
chaotic behavior. Observations are now confirming this 
possibility. Success will take a combination of 
exploratory modeling and a strong but simple field 
program for the collection of long data sets of system 
behavior. 

Acknowledgments. The author would like to 
acknowledge the long term support of several funding 
agencies including the U.S. Geological Survey, Coastal 
Geology program under cooperative agreement 1434-93- 
A-1124, and particularly the Office of Naval Research 
(Coastal Dynamics program, grant N00014-90J1118), a 
supporter since I began this business. Thanks to Peter 
Müller and Phyllis Haines for the kind invitation to the 
workshop and their patience waiting for this manuscript 
and, of course, to Marcia Turnbull for help in all those 
little, and big, things. Thanks to Megan Burt and best of 
luck in the next year. 



262 HOLMAN 

References 

.Bowen, A.J., and R.A. Holman, Shear instabilities of the mean 
longshore current,  1. Theory, J. Geophys. Res., 94(C12), 
18,023-18,030, 1989. 

Bryan,  K.R.,  and  A.  J.  Bowen,  Edge  wave trapping  and 
amplification on barred beaches, J. Geophys. Res., in review. 

Holland, K.T., C. Valentine, and R.A. Holman, Wavenumber- 
frequency   structure   of   infragravity   swash   motions,   J. 
Geophys. Res., in review. 

Holman, R.A., Nearshore processes, U.S. National Report to the 
IUGG (1991-1994), in press. 

Lippmann, T.C., and R.A. Holman, Quantification of sand bar 
morphology: A video technique based on wave dissipation, J. 
Geophys. Res., 94(d), 995-1011, 1989. 

Lippmann, T.C., and R.A. Holman, The spatial and temporal 
variability of sand bar morphology, J. Geophys. Res., 95(d), 
11,575-11,590,1990. 

Oltman-Shay, J.,  S.  Elgar, and P.  Howd, Observations of 
infragravity-frequency long waves, II, Comparisons with a 2- 
D wave group generation model, EOS Trans. AGU, 70, 1333, 
1989. 

Oltman-Shay,   J.,   and   R.T.   Guza,   Infragravity   edge   wave 
observations on two California beaches, J. Phys. Oceanogr., 
17(5), 644-663, 1987. 

Oltman-Shay, J., P.A.  Howd,  and W.A.  Birkemeier,  Shear 
instabilities of the mean longshore current, 2. Field data, J. 
Geophys. Res., 94(C12), 18,031-18,042, 1989. 

Ruessink, B.G., and A. Kroon, The behavior of a multiple bar 
system   in   the   nearshore   zone   of   Terschelling,    the 
Netherlands, 1965-1993, Mar. Geoi, 121, 187-197, 1994. 

Thornton, E. B., and R.T. Guza, Transformation of wave height 
distribution, J. Geophys. Res., 88(C10), 5925-5938, 1983. 

Wijnberg,  K.M.,  and  F.C J.  Wolf,  Three-dimensional  bar 
behaviour, in Proceedings Coastal Dynamics '94, Edited by 
A.S.-Arcilla, M. J.F.  Stive and N.C. Kraus, pp. 59-73, 
ASCE, Barcelona, 1994. 



Topographie Effects in the Ocean 

P. Müller 

School of Ocean and Earth Science and Technology University of Hawaii, Honolulu, Hawaii, U.S.A. 

G. Holloway 
Institute of Ocean Sciences, Sidney B.C., Canada 

The effects of seafloor topography on ocean 
circulations are more complicated and more influential 
than previously supposed. Recent advances, driven by 
intensive observational efforts and by increasingly 
powerful numerical simulations, show the crucial role that 
topography plays in abyssal circulations, mixing, ocean- 
shelf exchanges, and the rectification of time-dependent 
flows. Progress on these and related topics was reviewed 
at the eighth 'Aha Huliko'a Hawaiian Winter Workshop 
which was held January 17-20, 1995, at the University of 
Hawaii in Honolulu and drew together observers, 
numerical and laboratory modelers, and theorists. 

Abyssal Circulations 

Topographic influences are most felt by the deep 
abyssal circulations. Continental margins and ridges 
confine the flow to basins connected by narrow channels. 
These abyssal circulations are currently being mapped by 
ambitious observational programs; among them are the 
Synoptic Ocean Prediction (SYNOP) program in the Gulf 
Stream region between Cape Hatteras and the Grand 
Banks and the Deep Basin Experiment in the Brazil Basin. 
Both regions show complex flow structures governed by 
basin topography with in- and outflow through passages 
(N. Hogg). Flow through these passages might be 
critically controlled, as seen in laboratory experiments. A 
comparison of estimates assuming critical control with 
volume fluxes through the Romanche Fracture Zone, the 
Vema Channel, the Discovery Gap, and other passages 
(based on CTD data) shows general good agreement (J. 
Whitehead). 

Numerical simulations of deep abyssal circulations 
employ various types of models. The flow of dense water 
from the southern Adriatic Sea into the eastern 
Mediterranean Basin was simulated by D. Haidvogel 
using an inverted \Vi layer reduced gravity model with 
prescribed inflow and uniform upwelling. R. Salmon 
employed a model based on an abridgement of the 
planetary geostrophic equations and applied it to the deep 
flow approaching the Samoan Passage. Numerical models 
often have to assume unrealistically large friction 
coefficients; R. Ford solved the linear wind-driven 
planetary geostrophic equations in realistic bathymetry 
with a triangular finite element net based on points that lie 
on a set of geostrophic contours and obtained solutions at 

much smaller values of friction than have previously been 
obtained. The aggregate force that topography exerts on 
mean flows is called "form stress" or "topographic stress". 
In a barotropic quasigeostrophic model, slightly elongated 
ridges with axes inclined to a uniform incident flow lead, 
surprisingly, to different stress regimes when the 
inclination angle is reversed (G. Carnevale). 

Seamounts 

An especially intensive observational program was 
conducted at Fieberling Guyot in the eastern North Pacific 
to study the flow at and around an isolated seamount. The 
observations show an anticyclonic vortex cap on top of 
the seamount produced by tidal rectification, internal 
wave spectra with peaks at the critical reflection 
frequency, and trapped diurnal (Kl) oscillations that must 
be interpreted as vertically propagating vortex-trapped or 
evanescent waves rather than as strictly standing 
seamount-trapped waves (C. Eriksen, E. Kunze). The 
wave fields around the seamount are associated with 
regions of low Richardson numbers, density inversions, 
and enhanced turbulent mixing. Topographically trapped 
waves are also observed in other places, e.g., riding along 
portions of ridges and along rectilinear valleys, and 
exhibit energy levels well above "background" (D. 
Luther). 

Critically reflected internal waves and topographically 
trapped waves are an energy source for enhanced 
turbulent mixing at seamounts and other topographic 
features. An open problem is how this "boundary mixing" 
affects the stratification in the ocean interior and whether 
or not it can account for the large effective diffusivities of 
several lfJ4 m2 s~\ required by mass and heat balances in 
abyssal basins, and bigger than those found by direct 
microstructure turbulence measurements in the upper 
ocean. The observations at Fieberling Guyot suggest that 
internal waves do not provide enough energy for such a 
large effective diffusivity, but Fieberling Guyot may not 
be representative. Another open question is whether or 
not secondary flows can efficiently move mixed water 
away from the boundary or can restratify the mixed water. 

The large data base obtained at Fieberling Guyot 
provides essential bounds for numerical simulation. 
Using a sigma-coordinate model, A. Beckmann 
investigated the strength  and  spatial  structure of the 
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rectified flow at the flanks and on the top of a steep 
isolated seamount. While many aspects of the simulation 
agree well with the observations at Fieberling Guyot, there 
are also discrepancies, especially in the time-dependent 
flow. 

The phenomena of wave trapping at topography is of 
principal interest to theorists and often investigated with 
methods borrowed from theoretical physics. The 
circumstances under which trapping occurs at an isolated 
seamount are fairly well explored. M. Hendershott 
considered the extension to a random array of seamounts 
and identified circumstances for which geostrophic flow 
perturbations remain localized or propagate through the 
seamount array. The wave equation for long monochro- 
matic surface gravity waves can be transformed to a 
Schrödinger equation, which facilitates the analysis of the 
possible wave modes. Trapping of a different kind occurs 
when a monochromatic internal gravity wave is introduced 
into a channel. Upon successive reflections the wave 
becomes focussed to a limiting trajectory (L. Maas). 

Ocean-Shelf Exchanges 

The coastal ocean meets the deep ocean at the 
continental shelf edge. The constraint that steep bathym- 
etry poses on ocean-shelf exchanges can be broken by a 
number of processes: internal tides and waves; upwelling, 
fronts, and filaments; downwelling and cascading; along- 
slope currents, instability, and meanders; eddies; tides, 
surges, and coastally trapped waves. A preliminary 
assessment of this daunting list was made by J. 
Huthnance, according to their scales and context. Some 
of the processes have already been studied in some detail. 
An intensive observing program at Astoria Canyon 
showed details of the interaction of a time-dependent 
along-shelf current with the canyon and points to a special 
role that canyons may play in ocean-shelf exchanges (B. 
Hickey). Internal Lee waves generated by along-slope 
flows over small-scale topography show an asymmetry in 
the propagation characteristics that lead to a transport of 
mean-flow momentum onto the shelf (S. Thorpe). 

Flow separation is important in numerous areas of 
engineering fluid mechanics. It is also apparent in many 
nearshore flows and has significant implications for near- 
shore dispersion. The physics depends on bottom slope, 
friction, stratification, and rotation. Most of this 
parameter space has not, however, been explored (C. 
Garrett). Using the wind-forced barotropic shallow-water 
vorticity equation, J. Becker examined the dynamics and 
energetics of western boundary current detachment above 
a continental margin. Flow separation may also play a 
role in the deep ocean and constitutes a mechanism by 
which mixed fluid layers can detach from the boundary 
and contribute to interior mixing. Flow separation might 
also be the cause of a wave-like signal observed in sea 
level records in the Western Pacific. Using GEOSAT alti- 

metric heights, G. Mitchum has tracked this signal all the 
way back to South Point on the Big Island of Hawaii. 

Laboratory Studies 

Theoretical studies and numerical experiments are 
complemented by laboratory studies. S. Allen studied 
flows that encounter various sorts of obstacles and 
delineated the linear effects governed by propagation of 
topographic Rossby waves from nonlinear effects and the 
influence of stratification on both. G. Ivey studied in 
detail the turbulent mixing induced by the critical 
reflection of internal waves at a slope, and S. Thorpe 
showed how the presence of a sloping boundary affects 
the transition to turbulence in a stratified shear flow and 
leads to "twisted" billows. J. Verron performed exper- 
iments in the 13-m diameter rotating tank in Grenoble to 
study rectification in a coastal geometry with an offshore 
bank. The laboratory results agree qualitatively with 
simulations from a homogeneous primitive equation 
numerical model, showing two distinct flow regimes 
depending on the ratio of the flow oscillation to the 
background rotation frequency. Overall, these laboratory 
studies provide detailed and specific insights into 
topographic effects that might be at work in the ocean. 

Rectification Process 

The interaction of eddies, waves, or oscillating flows 
with topography generates mean flows. This rectification 
process was the topic of the 1989 workshop "Topographic 
Stress in the Oceans" (Holloway and Müller, 1990, Eos 
71, 12). Since then considerable progress has been made, 
mostly the result of increasingly powerful simulations. 
When considering the rectification process, a distinction 
needs to be made between the direct forcing by 
independently driven eddy processes and the reorgani- 
zation of the mean flow caused by instabilities (as in the 
Gulf Stream recirculation). High-resolution experiments 
with a barotropic shallow water model show that an initial 
field of random eddies in a basin surrounded by 
continental margin topography produces a vigorous 
rectified flow (A. Shchepetkin). Experiments in a similar 
setting with a three-layer fluid of coarser resolution were 
performed by E. Chassignet to investigate how well the 
topographic stress exerted by unresolved eddies can be 
represented in a coarser resolution model, following 
statistical mechanical tendencies. Coarse resolution 
models with parameterized eddy-topography interaction 
showed improved fidelity when compared with data from 
a global inventory of long-term current meter observations 
(G. Holloway). 

In a coastal configuration, D. Haidvogel compared five 
differently formulated numerical models. While recti- 
fication of an imposed oscillatory flow occurred in each of 
the models, specific results differed substantially among 
the models. 
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The Surf Zone, Where Topography and Flow 
Interact 

In many circumstances, the topography is given and the 
flow responds. But there are circumstances when the 
topography yields. This was impressively documented in 
a time-lapsed video by R. Holman. It showed the 
sandbank patterns shifting under the influence of the 
pounding surf at an Oregon beach over a two year period. 
Here, flows and topography truly interact with nonlinear 
feedback loops that are not fully understood yet. 

Conclusions 

The influence of topography on ocean circulations is 
greater than previously supposed. Though confident 
characterization of the dynamic processes is still 
problematic ambitious observing programs and powerful 
numerical simulations have caused some striking advances 
in recent years: 

• One of the last frontiers in oceanography, the 
circulation in deep basins, is being mapped and its 
dynamics explored by various types of numerical 
models and ideas from hydraulic control. 

• Processes, like internal wave reflection and 
topographically trapped wave modes, are now 
recognized to lead to vigorous mixing near slopes. 
The larger scale consequences of this boundary 
mixing are being explored. 

• While the importance of understanding ocean-shelf 
exchange processes is increasingly recognized, this 
remains a daunting subject for laboratory studies, 
numerical simulations, and comprehensive field 
experiments. 

• The parameterization of topographic stress 
(rectification), while not yet a fully resolved issue, 
has seen marked progress since the 1989 meeting 
as a result of novel approaches based on statistical 
mechanical tendencies and increasingly powerful 
numerical simulations. 
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